• Title/Summary/Keyword: 모서리부 하중

Search Result 23, Processing Time 0.019 seconds

Relationship between Concrete Pavement Stresses under Multi-Axle Interior and Edge Loads (중앙부와 모서리부 다축 차량 하중에 의한 콘크리트 도로포장의 응력 상관관계)

  • Kim Seong-Min;Cho Byoung-Hooi;Ryu Sung-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.143-153
    • /
    • 2006
  • The differences in the stress distribution and the critical stresses in concrete pavement systems were analyzed when the dual-wheel single-, tandem-, and tridem-axle loads were applied at the interior and the edge of the pavement. The effects of the concrete elastic modulus, slab thickness, foundation stiffness, and tire contact pressure were investigated. The stresses under the interior loads were calculated using the transformed field domain analysis and stresses under the edge loads were obtained using the finite element method. The critical stresses under the interior and the edge loads were compared with respect to various parameters and the equations to predict the ratio between the stresses under the edge and the interior loads were developed and verified. From this study, it was found that the trends of the changes in the critical concrete stresses under the interior and the edge loads were very similar and the critical stress locations under those loads were identical. The critical stress ratio, which was obtained by dividing the critical stress under the edge loads into that under the interior loads, decreased with increasing the number of axles. That ratio became larger as the concrete elastic modulus increased, the slab thickness increased, the foundation stiffness decreased, and the tire contact pressure increased.

  • PDF

Stress Distribution of Concrete Pavements under Multi-Axle Vehicle Loads Applied at Pavement Edges (모서리부 차량 다축하중에 의한 콘크리트 도로 포장의 응력 분포 특성)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Lee, Sang-Hoon
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.13-24
    • /
    • 2006
  • The stresses in concrete pavement systems are larger when vehicle loads are applied at pavement edges, and these large stresses significantly affect the behavior and performance of pavements. Therefore, in this study, the stress distribution and the critical stresses in concrete pavements were investigated using a finite element model when dual-wheel single-, tandem-, and tridem-axle loads were applied at pavement edges. First, the stress distribution along the longitudinal and transverse directions was analyzed, and then the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were investigated. The effect of the tire contact pressure related to the tire print area was also studied. The location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to edge loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The effect of the tire contact pressure on the critical stress was clear as the slab thickness became smaller. The critical stress location in the transverse direction was independent of the concrete elastic modulus and the foundation stiffness; however, it moved into the interior as the slab thickness increased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.

  • PDF

모서리 절단 효과로 인한 사각주상체의 공기력 특성변화 전산해석

  • Hwang, Gyu-Gwan
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.553-558
    • /
    • 2015
  • 교량의 주탑, 초고층빌딩과 같이 세장비가 큰 대형구조물의 경우 풍하중에 취약한 특성을 지니고 있어서 바람에 의해 직각 방향으로 발산 진동하는 갤로핑(galloping) 현상이 발생하게 된다. 구조물의 진동을 억제하려는 방안으로 단면 형상에 변화를 주어 공기역학적 불안정성을 감소시키는 방법이 사용되고 있다. 본 논문에서는 Edison_CFD를 이용하여 모서리 절단부의 비율과 받음각에 따른 공기력 특성에 대한 전산해석을 수행하였다.

  • PDF

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

Critical Angle Analysis of Elliptical Corner Cracks in Mechanical Joints by Weight Function Method and Finite Element Analysis (가중함수법과 유한요소해석에 의한 기계적 체결부에 존재하는 타원형 모서리균열의 임계 경사각 해석)

  • Heo, Sung-Pil;Yang, Won-Ho;Ko, Myung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • There is the high possibility of crack initiation from mechanical joints, which are widely used in aircraft fuselages, due to the development of stress concentration and contact pressure. In this paper, the mixed-mode stress intensity factors at the surface and deepest points of an inclined quarter elliptical corner crack in mechanical joints are analyzed by the weight function method. The coefficients included in the weight function are obtained by finite element analyses for reference loadings. Critical angle at which mode I stress intensity factor becomes maximum is determined by analyzing the variation of stress intensity factors along incline angle of crack and the effects of the amount of clearance and crack depth on the critical angle are investigated.

A Stress Analysis of Double-deck Train with Composite Material (복합재료 2층 기차의 응력해석)

  • 이영신;김재훈;박병준;김기남;주정수
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.75-82
    • /
    • 1999
  • 본 연구의 목적은 구체 경량화의 일환으로써, 복합재료(3-X Board, Al extrusion panel, etc) 사용에 대한 가능성을 판단하기 위한 기초자료를 구축하는데 있다. 해석 대상은 2층 기차의 객차부분이고, 구체에 적용하는 복합재료는 3-X Board를 이용하였다. 구체의 구조 건전성을 평가하기 위해 상용 유한요소 프로그램을 이용하여 다양한 하중 하에서의 응력해석을 수행하였다. 구체에 사용되는 복합재료(3-X board)의 응력발생 경향을 파악하는 것이 목적이므로, 상세한 모델보다는 단순화한 모델을 이용하였다. 응력집중은 센터실(center sill), 1층 바닥과 측면과의 연결부, 그리고, 구체의 앞부분 창문 모서리에서 발생하였다. 압축 및 수직하중 하에서의 응력값들은 재료의 항복강도 내에 존재하였으나, 고유진동수는 제한 값보다 낮은 값을 갖았다. 현재 상세 모델에 대한 해석을 수행 중에 있다. 본 연구는 복합재료(3-X board)가 적용된 구체에 대한 초기 연구로써 만족할 만한 결과를 제시한다.

  • PDF

Earthquake Resistance of Beam-Column Connection of Precast Concrete U-Shaped Shell Construction (프리캐스트 콘크리트 U형 쉘 공법 보-기둥 접합부의 내진성능)

  • Im, Hyeong-Ju;Park, Hong-Gun;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.741-751
    • /
    • 2010
  • An experimental study was performed to investigate the earthquake resistance of the beam-column connections as a part of a precast concrete moment-resisting frame that uses precast concrete U-shaped shells for the beams. Five full-scale precast concrete specimens and one conventional monolithic concrete specimen were tested under cyclic loading. The parameters for this test were the reinforcement ratio, stirrup spacing, and end-strengthening details of the precast beam shell. The test results showed that regardless of the test parameters, the precast concrete beam-column connections showed good load-carrying capacity and deformation capacity, which were comparable to those of conventional monolithic concrete specimen. However, at large deformations, the beam-column connections of the precast concrete specimens were subjected to severe strength degradation due to diagonal shear cracks and the bond-slip of re-bars at the joint region. For this reason, the energy dissipation capacity and stiffness of the precast concrete specimens were significantly less than those of the cast-in-place specimen.

Evaluation of Blast Resistance of Slab-Column Connections According to the Confinement Effects and Drop Panel (슬래브-기둥 접합부의 구속도 및 드롭패널에 따른 방폭 성능 평가)

  • Lim, Kwang Mo;Lee, Joo Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.451-457
    • /
    • 2017
  • The numerical analysis was conducted to evaluate the behavior of slab-column connection subjected to blast loads using LS-DYNA. The typical form of slab-interior column connection for analysis was considered as a reference specimen and the drop panel slab-interior column was designed to verify the effects of drop panel. The slab-column connections, which were composed of interior, edge and corner column, were additionally analyzed to compare their confinement effects of specimens. Analysis results were contained the failure shape of connection, behavior of member and so on. From the results, the blast-resistant capacities of slab-column connection would be enhanced by reinforcing the drop panel. In addition, the performance of connections could be improved, when the confinement effects were enhanced.

Behavior of Small-Scale Pile Group Under Vertical Loading (연직하중을 받는 소규모 무리말뚝의 거동)

  • 이영남;이승현;박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.37-46
    • /
    • 2001
  • Pile load tests were carried out to investigate the contribution of the pile cap to the carrying capacity of a pile group and load transfer characteristics of piles in the group. A group of 24 piles$(4 \times6 array)$ of 92.5mm diameter steel pipe were installed to the depth of 3m fron the ground surface, the top of weathered rock. A maximum load of 320ton was applied to the pile cap, $1.5\times2.3m$, in contact with the ground surface. At the maximum load of 320ton, the pile cap has carried 22% of the total load. Average ultimate capacity of pile in the pile group was estimated to be 16.4ton, substantially higher than that of single pile, installed at the corner and tested before pile cap construction. For the same magnitude of settlement, the pile in the center carried less load than the pile at the perimeter due to strain superposition effect. Piles in the group showed almost constant contribution(approx. 60%) of side friction to the total capacity for all of the loading stages, while that of single pile decreased from 82% to 65%.

  • PDF