The interest in the blockchain technology has been increasing since its inception and it has been applied to many fields and sectors. The blockchain technology creates a decentralized environment where no third party controls the data and transaction. Mobile apps recommendation has been extensively used to recommend apps to mobile users. For example, Android-based recommendation applications have been developed to recommend other mobile apps for download depending on user's preferences and mobile context. These recommendations help users discover apps by referring to the experiences of other users. Due to the collection of a large amount of data and user information, there is a problem of insecurity and user's privacy that are prone to be attacked. To address this issue the blockchain technology can be incorporated to assure cryptographic safety. In this paper, we present a survey of the on-going mobile app recommendations and e-commerce technology trend to address how the blockchain can be incorporated into the collaborative filtering recommendation systems to enable the users to set up a secured data, which implies the importance of user privacy preference on personalized app recommendations.
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.64-69
/
2013
스마트폰의 대중화로 인하여 앱 마켓 시장이 급속도로 성장하였다. 이로 인하여 하루에도 수십개의 새로운 앱들이 출시되고 있다. 이러한 앱 마켓 시장의 급격한 성장으로 인해 사용자들은 자신이 흥미를 가질만한 앱들을 선택하는데 큰 어려움을 겪고 있어 앱 추천 방법에 대한 연구에 많은 관심이 집중되고 있다. 기존 연구에서 협력 필터링 기반의 추천 방법들을 제안하였으나 이는 콜드 스타트 문제를 지니고 있다. 이와는 달리 컨텐츠 기반 필터링 방식은 콜드 스타트 문제를 효율적으로 해소할 수 있는 방법이지만 앱설명에는 광고, 공지사항등 실질적으로 앱의 특징과는 무관한 노이즈들이 다수 존재하고 이들은 앱 사이의 유사관계를 파악하는데 방해가 된다. 본 논문에서는 이런 문제를 해결하기 위하여 앱 설명에서 노이즈에 해당하는 설명들을 자동으로 제거할 수 있는 모델을 제안한다. 제안하는 모델은 모바일 앱 설명을 구성하고 있는 각 문단을 LDA로 학습된 토픽들의 비율로 나타내고 이들을 분류문제에서 우수한 성능을 보이는 SVM을 이용하여 분류한다. 실험 결과에 따르면 본 논문에서 제안한 방법은 기존에 문서 분류에 많이 사용되는 Bag-of-Word 표현법에 기반한 문서 표현 방식보다 더 나은 분류 성능을 보였다.
KIPS Transactions on Software and Data Engineering
/
v.2
no.9
/
pp.615-620
/
2013
With the development of smartphones, the number of applications for smartphone increases sharply. As a result, users need to try several times to find their favorite apps. In order to solve this problem, we propose a recommendation system to provide an appropriate app list based on the user's log information including time stamp, location, application list, and so on. The proposed approach learns three recommendation models including Naive-Bayesian model, SVM model, and Most-Frequent Usage model using temporal and spatial attributes. In order to figure out the best model, we compared the performance of these models with variant features, and suggest an hybrid method to improve the performance of single models.
This study is for the use of color recommendation system for the color combination of mobile application. For this study, color combination methods of a material design color system that recommends harmonized colors automatically and of a mobile web application were applied to a mobile application design and a color combination experiment was carried out. Then for a survey on the experiment using the two methods, color combinations, selected colors and satisfaction with outputs were investigated on a 7-point Likert scale. And color combination characteristics of outputs were compared. It was found that the material design color palette made it easy to select colors by systematizing the regular coloring stages of fixed colors automatically, but there were differences in color compositions and color scopes of dominant color, assort color and accent colors, which are three-color combinations of mobile web application and accent color selection function was required for each design, since only primary colors and secondary colors could be selected. Moreover, chromatic colors were used a lot in the material system because of the fixed color scopes and color combination scopes and images of color combination outcomes varied depending on the color combination scopes, even when tones with a big contrast or complementary colors were selected. The role of color composition was important according to the color combination scopes.
Kim, Hyun-ju;Kim, Chang-geun;Lee, Gwang-seok;Hong, Dong-sun
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.635-636
/
2014
최근 몇 년간 전세계적으로 모바일 기기의 사용이 급속도로 증가되고 있다. 이는 모바일 App 기반으로 하는 전자상거래 형태의 다양한 변화와 웹과 같은 영향력 있는 모바일 앱 스토어의 성장에 영향을 주었다. 그러나, 수많은 App스토어에 존재하고 있는 애플리케이션은 간편한 추천방법으로 사용자에게 뷰 정보를 제공하여 다수의 사용자는 원하는 아이템을 찾는데 많은 시간과 노력을 기울여야 한다. 이에 본 논문에서는 재능마켓으로 "재능쇼핑"을 위해 집단지성을 기반으로 하는 재능추천 시스템을 제안한다. 이는 집단 지성을 기반으로 사용자의 선호도 정보와 재능정보를 분석 평가하여 구매자에게 재능쇼핑에 대한 아이템을 자동 추천하도록 설계 구현하였다. 따라서 본 논문에서 제안한 시스템은 소비자에게는 맞춤형 구매정보 제공을 가능하게 하며, 오픈 마켓 관리자에게는 구매자의 니즈에 대한 자동분석과 사용자 구매 효율성의 증진이 향상될 것으로 기대한다.
Junseo Kim;Ki-Beom Song;Kyu-hyun Lee;Injeong Choi;Young-jong Kim
Annual Conference of KIPS
/
2023.05a
/
pp.39-41
/
2023
본 논문에서는 대학생들의 스터디 활동을 돕는 앱의 구현 내용을 앱에서 핵심적으로 사용되는 관심도 기반 추천 알고리즘을 중점으로 소개하였다. 해당 알고리즘을 통해 이 앱은 사용자에게 더욱 높은 접근성을 제공한다. 본 논문에서는 이 알고리즘의 설계와 적용 방식을 서술하였고, 이를 통한 앱의 기대효과를 작성하였다. 본 연구의 과정은 해당 앱을 개발하는 과정을 서술하여 유사한 앱 또는 유사한 알고리즘을 활용하는 앱을 개발하는 프로젝트에서 사례로 활용될 수 있다.
Recently mobile application providers and telecommunication companies went through a difficult time in a highly competitive mobile and its application market where we've seen a huge trend for diverse mobile applications occurring on smart phone. If there were a time when those of companies need to analyze factors affecting users' intention to download or recommend others applications more than ever, it is now. Based on UTAUT model, this research is to provide them with strategic implications by analyzing those factors according to application types with utilization and hedonic values. As a result, firstly trust and personalization have positive impact on Performance Expectancy and users' intention to use have been significantly affected by Performance Expectancy and Effort Expectancy. Secondly the result of path analysis has a different outcome according to application types with utilization and hedonic values. Therefore it is expected that the research gives practical and strategic implication for application developer, mobile companies and others helping application development, new service launch and marketing implementation.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.2
/
pp.379-386
/
2014
As the use of mobile device is increasing rapidly, the number of users is also increasing. However, most of the app stores are using recommendation of simple ranking method, so the accuracy of recommendation is lower. To recommend an item that is more appropriate to the user, this paper proposes a technique that reflects the weight of user information and recent preference degree of item. The proposed technique classifies the data set by categories and then derives a predicted value by applying the user's information weight to the collaborative filtering technique. To reflect the recent preference degree of item by categories, the average of items' rating values in the designated period is computed. An item is recommended by combining the two result values. The experiment result indicated that the proposed method has been more enhanced the accuracy, appropriacy, compared to item-based, user-based method.
스마트폰 시장이 급성장하면서, 앱스토어 시장도 급성장 하고 있다. 애플과 구글의 앱스토어는 각각 65 만개, 60 만개의 유효 앱 등록량을 돌파했으며, 다운로드 역시 300 억과 200 억 다운로드를 돌파하였다. 앱 사용자들은 어떤 이유로 수 많은 어플리케이션 중에서 특정 어플리케이션을 선택하고 다운받는지에 대한 연구는 많이 부족한 상황이다. 이에 본 연구는 컨텐츠 정보와 외적인 요인을 4가지 요소(앱의 정보, 외부 추천, 사용 평가, 사용 통계)로 분류하여 구매 결정에 영향을 미치는 요인을 찾고, 모바일 어플리케이션 스토어 시스템의 품질 개선과 추가로 국내에서 어플리케이션 스토어 시스템 구축을 진행하고 있는 사업자에게 실무적 도움을 제공할 수 있을 것이라 기대한다.
Proceedings of the Korea Contents Association Conference
/
2014.11a
/
pp.19-20
/
2014
스마트폰의 확산과 그에 따른 모바일 앱 산업의 괄목할 성장과 발맞추어 대학생들의 스마트폰 어플리케이션 선택 이유에 대한 조사를 실시한다. 본 연구에서는 스마트폰 어플리케이션의 선택 이유에 대한 양적인 조사를 연구 범위로 하고 조사방법론으로는 대전의 한 대학교의 학생들에게 설문을 통하여 어플리케이션을 선택하는 이유를 파악하는 방법을 취한다. 또한 어플리케이션 선택 이유에 있어 성별에 따른 차이와 학년에 따른 차이를 SPSS 20 통계패키지를 이용하여 검증한다. 조사 결과는 어플리케이션 선택 이유로 "포털 등에서 정보를 취득하는 경우"와 "친구 등 타인의 권유"가 근소한 차이로 1, 2위로 꼽히고 "앱스토아의 추천"이 가장 낮은 비중을 나타난다. 성별 어플리케이션 선택 이유는 여자가 남자에 비해 친구 등 타인의 권유에 훨씬 크게 영향을 받는 등 통계적으로 유의한 차이를 보인다. 반면 학년별 선택 이유는 통계적으로 유의한 차이를 보이지 않는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.