• Title/Summary/Keyword: 모바일 맛집 추천 서비스

Search Result 4, Processing Time 0.018 seconds

Development of Mobile Context Awareness Restaurant Recommendation Services (모바일 상황인식 추천맛집 서비스 개발)

  • Ryu, Jong-Min;Hong, Chang-Pyo;Kang, Kyung-Bo;Kang, Dong-Hyun;Yang, Doo-Yeong;Jwa, Jeong-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.5
    • /
    • pp.138-145
    • /
    • 2007
  • Mobile network evolution and development of USN technologies introduce new business model based on context awareness. Cellular operators provide friend finding service using cell based location information and telematics service using GPS location information. Recently cellular operators provide yellow page service based cell based location information. In this paper, we develop mobile tour application on WIPI platform based on location information. Mobile tour information services provide the best information based on context awareness using user location information from LBS(Location Based Service) Platform, season, weather conditions, time from Web server, and personal preference information stored in database. Mobile tour information service application is developed on WIPI platform.

Design of a Food Menu Recommendation App using Weather Information (날씨 정보를 활용한 음식 메뉴 추천 App 설계)

  • Ok-Kyoon Ha;Yong-hun Ok;Jin-chan Kim;Yong-Jin Kim;Dong-hun Na;Uk-ryeol Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.277-278
    • /
    • 2024
  • 일반적으로 한국인은 식사를 위해 음식 메뉴를 고를 때 쉽게 결정하지 못하는 비율이 50% 이상으로 높다고 알려져 있다. 이러한 단순 고민 해결을 위해 다양한 음식이나 맛집을 추천해 주는 모바일 앱이나 서비스가 존재한다. 그러나 이들은 사용자가 평소 많이 검색했던 음식이나 맛집들을 위주로 찾아주거나, 랜덤으로 지정된 카테고리 내의 음식들 중 하나를 추천해주는 방식, 혹은 사용자 리뷰 점수가 높은 음식점을 우선적으로 추천해 주는 방식 등을 사용하고 있다. 따라서 기존의 추천 방식은 음식을 추천에 있어 사용자의 의도나 실질적인 연관성이 매우 낮고 평소 먹던 음식의 종류를 크게 벗어나지 않는 경우가 많아 음식 추천이라는 본래의 취지와는 멀어진다. 본 논문에서는 음식 메뉴를 선정하는데 있어 실질적인 영향을 주는 환경 요소인 계절, 기후 등의 날씨 정보를 기반으로 생성형 AI를 통해 적절한 음식을 추천하고 해당 음식을 판매하는 음식점과 그 위치를 알려주는 앱을 개발한다. 개발하는 앱은 바쁜 직장인들이나 매 끼니를 고민하는 학생 등의 메뉴 고민을 해결하는데 도움을 줄 수 있으며, 각종 배달 서비스 앱의 음식 추천 기능의 고도화에 활용될 수 있다.

  • PDF

The Effectiveness of Apps Recommending Best Restaurant through Location-based Knowledge Information: Privacy Calculus Perspective (위치기반 지식정보를 활용한 맛집 추천 앱의 효과: 프라이버시 계산을 중심으로)

  • Jiang, Taypun;Lim, Hyun A;Choi, Jaewon
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.1
    • /
    • pp.89-106
    • /
    • 2017
  • In advanced mobile devices environment, the market share of mobile application has been increased. Among various mobile services, Location-based Service (LBS) is an important feature to increase user motivation related to purchase intention on mobile. However, individual privacy has also increased as an important problem for invasion of privacy and information leakage while too many LBS based applications (App) rapidly launched in the App market. In this study, we focused on perceived values of LBS App users who use Apps related to recommending best restaurants in China and South Korea. The purpose of this study is to identify important factors for perceived value when users provide personal information for LBS service provider. The result of this study is follows: perceived value can increase while LBS customers can more control self-information and information useability. Also information ability of users affected perceived values for LBS Apps. Also users' app user ability and perceived value were effects on privacy revenue. In addtion, perceived weakness of users and perceived value increased privacy threat.

Real-time Spatial Recommendation System based on Sentiment Analysis of Twitter (트위터의 감정 분석을 통한 실시간 장소 추천 시스템)

  • Oh, Pyeonghwa;Hwang, Byung-Yeon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • This paper proposes a system recommending spatial information what user wants with collecting and analyzing tweets around the user's location by using the GPS information acquired in mobile. This system has built an emotion dictionary and then derive the recommendation score of morphological analyzed tweets to provide not just simple information but recommendation through the emotion analysis information. The system also calculates distance between the recommended tweets and user's latitude-longitude coordinates and the results showed the close order. This paper evaluates the result of the emotion analysis in a total of 10 areas with two keyword 'Restaurants' and 'Performance.' In the result, the number of tweets containing the words positive or negative are 122 of the total 210. In addition, 65 tweets classified as positive or negative by analyzing emotions after a morphological analysis and only 46 tweets contained the meaning of the positive or negative actually. This result shows the system detected tweets containing the emotional element with recall of 38% and performed emotion analysis with precision of 71%.