• Title/Summary/Keyword: 모바일 딥러닝

Search Result 110, Processing Time 0.025 seconds

Tensorflow Model Environment with JavaCv for Mobile Devices (모바일을 위한 JavaCv를 이용한 Tensoflow모델 구동환경 개발)

  • Park, JinSang;Oh, SangGwon;Lee, SeongJin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.23-24
    • /
    • 2020
  • 현재 PC환경 뿐만 아니라 모바일 환경, 임베디드 환경에서 딥러닝 모델을 구동하기 위한 많은 연구들이 진행 중에 있다. 본 연구에서는 완성된 딥러닝 모델을 구동하는 환경을 Java로 구현하여 개발 접근성을 높이고자 한다. 이미지, 영상처리를 위해 OpenCV를 사용시 C++ API문서는 보편화되어있는 반면에 JavaCv API 문서는 그렇지 못하다. 그러나 모바일 개발 환경 특성상 Java언어로 작업한 코드를 안드로이드 스튜디오에서 작업 시 그대로 가져올 수 있어 개발이 용이하다. 모델 구동을 위한 전반적인 이미지 처리 및 작업환경을 개발하였다.

  • PDF

A Model Compression for Super Resolution Multi Scale Residual Networks based on a Layer-wise Quantization (계층별 양자화 기반 초해상화 다중 스케일 잔차 네트워크 압축)

  • Hwang, Jiwon;Bae, Sung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.540-543
    • /
    • 2020
  • 기존의 초해상도 딥러닝 기법은 모델의 깊이가 깊어지면서, 좋은 성능을 내지만 점점 더 복잡해지고 있고, 실제로 사용하는데 있어 많은 시간을 요구한다. 이를 해결하기 위해, 우리는 딥러닝 모델의 가중치를 양자화 하여 추론시간을 줄이고자 한다. 초해상도 모델은 feature extraction, non-linear mapping, reconstruction 세 부분으로 나누어져 있으며, 레이어 사이에 많은 skip-connection 이 존재하는 특징이 있다. 따라서 양자화 시 최종 성능 하락에 미치는 영향력이 레이어 별로 다르며, 이를 감안하여 강화학습으로 레이어 별 최적 bit 를 찾아 성능 하락을 최소화한다. 본 논문에서는 Skip-connection 이 많이 존재하는 MSRN 을 사용하였으며, 결과에서 feature extraction, reconstruction 부분과 블록 내 특정 위치의 레이어가 항상 높은 bit 를 가짐을 알 수 있다. 기존에 영상 분류에 한정되어 사용되었던 혼합 bit 양자화를 사용하여 초해상도 딥러닝 기법의 모델 사이즈를 줄인 최초의 논문이며, 제안 방법은 모바일 등 제한된 환경에 적용 가능할 것으로 생각된다.

  • PDF

A Deep Learning-Based Smartphone Phishing Attacks Countermeasures (딥러닝 기반 스마트폰 피싱 공격 대응 방법)

  • Lee, Jae-Kyung;Seo, Jin-Beom;Cho, Young-Bok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.321-322
    • /
    • 2022
  • 스마트폰 사용자가 늘어남에 따라 갖춰줘야 할 보안성이 취약하여, 다양한 바이러스 및 악성코드 위험에 노출되어 있다. 안드로이드는 운영체제 중 가장 많이 사용되는 운영체제로, 개방성이 높으며 수많은 악성 앱 및 바이러스가 마켓에 존재하여 위험에 쉽게 노출된다. 2년 넘게 이어진 코로나 바이러스(Covid-19)으로 인해 꾸준히 위험도가 높아진 피싱공격(Phshing attack)은 현재 최고의 스마트폰 보안 위협 Top10에 위치한다. 본 논문에서는 딥러닝 기반 자연어처리 기술을 통해 피싱 공격 대응 방법 제안 및 실험 결과를 도출하고, 또한 향후 제안 방법을 보완하여 피싱 공격 및 다양한 모바일 보안 위협에 대응할 수 있는 앱을 설계할 것이다.

  • PDF

Focal Calibration Loss-Based Knowledge Distillation for Image Classification (이미지 분류 문제를 위한 focal calibration loss 기반의 지식증류 기법)

  • Ji-Yeon Kang;Jae-Won Lee;Sang-Min Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.695-697
    • /
    • 2023
  • 최근 몇 년 간 딥러닝 기반 모델의 규모와 복잡성이 증가하면서 강력하고, 높은 정확도가 확보되지만 많은 양의 계산 자원과 메모리가 필요하기 때문에 모바일 장치나 임베디드 시스템과 같은 리소스가 제한된 환경에서의 배포에 제약사항이 생긴다. 복잡한 딥러닝 모델의 배포 및 운영 시 요구되는 고성능 컴퓨터 자원의 문제점을 해결하고자 사전 학습된 대규모 모델로부터 가벼운 모델을 학습시키는 지식증류 기법이 제안되었다. 하지만 현대 딥러닝 기반 모델은 높은 정확도 대비 훈련 데이터에 과적합 되는 과잉 확신(overconfidence) 문제에 대한 대책이 필요하다. 본 논문은 효율적인 경량화를 위한 미리 학습된 모델의 과잉 확신을 방지하고자 초점 손실(focal loss)을 이용한 모델 보정 기법을 언급하며, 다양한 손실 함수 변형에 따라서 지식증류의 성능이 어떻게 변화하는지에 대해 탐구하고자 한다.

Presenting Direction for the Implementation of Personal Movement Trainer through Artificial Intelligence based Behavior Recognition (인공지능 기반의 행동인식을 통한 개인 운동 트레이너 구현의 방향성 제시)

  • Ha, Tae Yong;Lee, Hoojin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.235-242
    • /
    • 2019
  • Recently, the use of artificial intelligence technology including deep learning has become active in various fields. In particular, several algorithms showing superior performance in object recognition and detection based on deep learning technology have been presented. In this paper, we propose the proper direction for the implementation of mobile healthcare application that user's convenience is effectively reflected. By effectively analyzing the current state of use satisfaction research for the existing fitness applications and the current status of mobile healthcare applications, we attempt to secure survival and superiority in the fitness application market, and, at the same time, to maintain and expand the existing user base.

Object Detection and Optical Character Recognition for Mobile-based Air Writing (모바일 기반 Air Writing을 위한 객체 탐지 및 광학 문자 인식 방법)

  • Kim, Tae-Il;Ko, Young-Jin;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.53-63
    • /
    • 2019
  • To provide a hand gesture interface through deep learning in mobile environments, research on the light-weighting of networks is essential for high recognition rates while at the same time preventing degradation of execution speed. This paper proposes a method of real-time recognition of written characters in the air using a finger on mobile devices through the light-weighting of deep-learning model. Based on the SSD (Single Shot Detector), which is an object detection model that utilizes MobileNet as a feature extractor, it detects index finger and generates a result text image by following fingertip path. Then, the image is sent to the server to recognize the characters based on the learned OCR model. To verify our method, 12 users tested 1,000 words using a GALAXY S10+ and recognized their finger with an average accuracy of 88.6%, indicating that recognized text was printed within 124 ms and could be used in real-time. Results of this research can be used to send simple text messages, memos, and air signatures using a finger in mobile environments.

Customer Churn Prediction Using RNN (RNN을 이용한 고객 이탈 예측 및 분석)

  • Lee, Seihee;Lee, Jee-Hyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.45-48
    • /
    • 2016
  • 오늘날의 고객은 다양한 정보를 통해 넓은 선택의 기회를 가진다. 이러한 상황에서 기업들은 고객과의 지속적인 관계를 유지하기 어려워짐에 따라 고객 유지와 신규 고객 유치를 위한 마케팅 비용을 천문학적으로 지출하고 있다. 기업들이 이탈하는 고객의 속성을 분석하고 이탈 시점을 예측할 수 있다면 마케팅에 사용되는 비용과 노력을 최소화할 수 있을 것으로 예측된다. 이를 위해 본 논문에서는 효과적인 고객 이탈 예측을 위한 딥러닝 기반의 이탈 예측 모델을 제안한다. 이 모델은 모바일 RPG 게임 고객의 시계열적인 행동 패턴을 이용하여 이탈을 예측하는 모델로, 예측을 위한 학습을 할 때 모델링된 고객 데이터를 분석하여 이탈 고객의 특성을 파악할 수 있게 한다. 실험을 통해 이탈 고객과 미 이탈 고객의 모델링된 값이 각각 특정 속성에 치중되어 있는 것을 확인하였고, 제안 모델이 합리적으로 고객의 이탈을 예측하는 것을 보였다.

  • PDF

Design and Implementation of Deep-Learning-Based Image Tag for Semantic Image Annotation in Mobile Environment (모바일 환경에서 딥러닝을 활용한 의미기반 이미지 어노테이션을 위한 이미지 태그 설계 및 구현)

  • Shin, YoonMi;Ahn, Jinhyun;Im, Dong-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.895-897
    • /
    • 2019
  • 모바일의 기술 발전과 소셜미디어 사용의 증가로 수없이 많은 멀티미디어 콘텐츠들이 생성되고 있다. 이러한 많은 양의 콘텐츠 중에서 사용자가 원하는 이미지를 효율적으로 찾기 위해 의미 기반 이미지 검색을 이용한다. 이 검색 기법은 이미지에 의미 있는 정보들을 이용하여 사용자가 찾고 자하는 이미지를 정확하게 찾을 수 있다. 본 연구에서는 모바일 환경에서 이미지가 가질 수 있는 의미적 정보를 어노테이션 하고 이와 더불어 모바일에 있는 이미지에 풍성한 어노테이션을 위해 딥러닝 기술을 이용하여 다양한 태그들을 자동 생성하도록 구현하였다. 이렇게 생성된 어노테이션 정보들은 의미적 기반 태그를 통해 RDF 트리플로 확장된다. SPARQL 질의어를 이용하여 의미 기반 이미지 검색을 할 수 있다.

Assignning Workers with Deep Learning in Food Delivery based on Mobile Crowdsouring (모바일 크라우드소싱 기반 음식 배달에서 딥러닝을 이용한 작업자 선정)

  • Lee, Yoonyeol;Kim, Ung-Mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.497-500
    • /
    • 2021
  • 최근 모바일 기술이 실생활에 널리 활용하면서 점점 모바일 크라우드소싱 활용이 크게 기대되고 있다. 그래서 배달 인력이 아닌 일반인도 어플리케이션을 모바일 기기에 설치하면 배달 인력이 되어 작업을 수행할 수 있다. 본 연구에서는 일반인도 참여할 수 있는 모바일 크라우드소싱 기반 배달에서 딥러닝을 이용한 작업자 선정 기법을 소개한다. 그리고 실험을 통하여 합성곱 신경망(Convolutional Neural Network)을 적용한 본 기법이 효과적이라는 것을 보인다.

A Performance Study on Lightweight Neural Network for Mobile Deep Learning (모바일 딥러닝을 위한 신경망 성능 평가에 관한 연구)

  • Shin, Ik Hee;Park, Junyong;Moon, Yong Hyuk;Lee, Yong-Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.435-437
    • /
    • 2019
  • 모바일 환경에서 다양한 AI 관련 응용을 수행하기 위해, 정확도에 기반한 크고 깊은 신경망 이외에, 정확도를 비교적 유지하면서 좀더 효율적인 신경망 구조에 대한 다양한 연구가 진행중이다. 본 논문에서는 모바일 딥러닝을 위한 다양한 임베디드 장치 및 모바일 폰에서의 성능 평가를 통해 경량 신경망의 비교 분석에 대한 연구를 담고 있다.