• Title/Summary/Keyword: 모바일 딥러닝

Search Result 110, Processing Time 0.032 seconds

Development of Traffic Accident Prevention System in School-zone Based on Artificial Intelligence (인공지능을 활용한 어린이 보호구역 사고방지 시스템 개발)

  • Park, JunHyeong;Moon, Byeongsoo;Kim, Bumjun;Park, Kunhyung;Kim, Yerim;Kim, Hyunghoon;Shim, Hyeon-min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.870-872
    • /
    • 2020
  • 본 시스템은 어린이보호구역에 발생하는 차량사고가 불법주정차된 차량으로 인한 사각지대에 의해 발생되는 것에 착안하여 보행자를 인식하여 운전자들에게 알려 안전운전을 유도하여 사고를 예방해 주는 시스템이다 본 시스템은 영상인식장치, 경광장치, 중계장치, 차량 내 경고장치, 원격 트래픽 경고 수신기로 구성되어 있으며 영상인식장치가 edge-TPU 장치를 활용하여 카메라로부터 입력받은 영상을 모바일넷 기반의 딥러닝으로 처리하여 보행자, 차량, 그밖의 물체를 인식한다. 보행자가 인식되면 외부에서 경광장치가 발광하여 신호를 보내고, 중계장치를 통해 차량 내 경고장치로 보행자 경고 신호를 보낸다. 실험 결과 영상인식을 통해 보행자와 차량을 분류 인식할 수 있음을 확인하였다. 이러한 시스템은 어린이 보호구역에서 발생할 수 있는 교통사고를 방지하기 위해 효과적임을 확인할 수 있었다.

Object classification for domestic waste based on Convolutional neural networks (심층 신경망 기반의 생활폐기물 자동 분류)

  • Nam, Junyoung;Lee, Christine;Patankar, Asif Ashraf;Wang, Hanxiang;Li, Yanfen;Moon, Hyeonjoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.83-86
    • /
    • 2019
  • 도시화 과정에서 도시의 생활폐기물 문제가 빠르게 증가되고 있고, 효과적이지 못한 생활폐기물 관리는 도시의 오염을 악화시키고 물리적인 환경오염과 경제적인 부분에서 극심한 문제들을 야기시킬 수 있다. 게다가 부피가 커서 관리하기 힘든 대형 생활폐기물들이 증가하여 도시 발전에도 방해가 된다. 생활폐기물을 처리하는데 있어 대형 생활폐기물 품목에 대해서는 요금을 청구하여 처리한다. 다양한 유형의 대형 생활폐기물을 수동으로 분류하는 것은 시간과 비용이 많이 든다. 그 결과 대형 생활폐기물을 자동으로 분류하는 시스템을 도입하는 것이 중요하다. 본 논문에서는 대형 생활폐기물 분류를 위한 시스템을 제안하며, 이 논문의 4 가지로 분류된다. 1) 높은 정확도와 강 분류(roust classification) 수행에 적합한 Convolution Neural Network(CNN) 모델 중 VGG-19, Inception-V3, ResNet50 의 정확도와 속도를 비교한다. 제안된 20 개의 클래스의 대형 생활폐기물의 데이터 셋(data set)에 대해 가장 높은 분류의 정확도는 86.19%이다. 2) 불균형 데이터 문제를 처리하기 Class Weight VGG-19(CW-VGG-19)와 Extreme Gradient Boosting VGG-19 두 가지 방법을 사용하였다. 3) 20 개의 클래스를 포함하는 데이터 셋을 수동으로 수집 및 검증하였으며 각 클래스의 컬러 이미지 수는 500 개 이상이다. 4) 딥 러닝(Deep Learning) 기반 모바일 애플리케이션을 개발하였다.

  • PDF

Design and Implementation of Personal Information Identification and Masking System Based on Image Recognition (이미지 인식 기반 향상된 개인정보 식별 및 마스킹 시스템 설계 및 구현)

  • Park, Seok-Cheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, with the development of ICT technology such as cloud and mobile, image utilization through social networks is increasing rapidly. These images contain personal information, and personal information leakage accidents may occur. As a result, studies are underway to recognize and mask personal information in images. However, optical character recognition, which recognizes personal information in images, varies greatly depending on brightness, contrast, and distortion, and Korean recognition is insufficient. Therefore, in this paper, we design and implement a personal information identification and masking system based on image recognition through deep learning application using CNN algorithm based on optical character recognition method. Also, the proposed system and optical character recognition compares and evaluates the recognition rate of personal information on the same image and measures the face recognition rate of the proposed system. Test results show that the recognition rate of personal information in the proposed system is 32.7% higher than that of optical character recognition and the face recognition rate is 86.6%.

The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence (인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구)

  • Park, Moon-Soo;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1248-1254
    • /
    • 2022
  • Efforts are being made to prevent traffic accidents in the school zone in advance. However, traffic accidents in school zones continue to occur. If the driver can know the situation information in the child protection area in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. It is designed by improving the LIDAR system that recognizes vehicle speed and pedestrians. It collects and processes pedestrian and vehicle image information recognized by cameras and LIDAR, and applies artificial intelligence time series analysis and artificial intelligence algorithms. The artificial intelligence traffic accident prevention system learned by deep learning proposed in this paper provides a forced push service that delivers school zone information to the driver to the mobile device in the vehicle before entering the school zone. In addition, school zone traffic information is provided as an alarm on the LED signboard.

Development of Security Anomaly Detection Algorithms using Machine Learning (기계 학습을 활용한 보안 이상징후 식별 알고리즘 개발)

  • Hwangbo, Hyunwoo;Kim, Jae Kyung
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • With the development of network technologies, the security to protect organizational resources from internal and external intrusions and threats becomes more important. Therefore in recent years, the anomaly detection algorithm that detects and prevents security threats with respect to various security log events has been actively studied. Security anomaly detection algorithms that have been developed based on rule-based or statistical learning in the past are gradually evolving into modeling based on machine learning and deep learning. In this study, we propose a deep-autoencoder model that transforms LSTM-autoencoder as an optimal algorithm to detect insider threats in advance using various machine learning analysis methodologies. This study has academic significance in that it improved the possibility of adaptive security through the development of an anomaly detection algorithm based on unsupervised learning, and reduced the false positive rate compared to the existing algorithm through supervised true positive labeling.

Development of a Simulator for Optimizing Semiconductor Manufacturing Incorporating Internet of Things (사물인터넷을 접목한 반도체 소자 공정 최적화 시뮬레이터 개발)

  • Dang, Hyun Shik;Jo, Dong Hee;Kim, Jong Seo;Jung, Taeho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.4
    • /
    • pp.35-41
    • /
    • 2017
  • With the advances in Internet over Things, the demand in diverse electronic devices such as mobile phones and sensors has been rapidly increasing and boosting up the researches on those products. Semiconductor materials, devices, and fabrication processes are becoming more diverse and complicated, which accompanies finding parameters for an optimal fabrication process. In order to find the parameters, a process simulation before fabrication or a real-time process control system during fabrication can be used, but they lack incorporating the feedback from post-fabrication data and compatibility with older equipment. In this research, we have developed an artificial intelligence based simulator, which finds parameters for an optimal process and controls process equipment. In order to apply the control concept to all the equipment in a fabrication sequence, we have developed a prototype for a manipulator which can be installed over an existing buttons and knobs in the equipment and controls the equipment communicating with the AI over the Internet. The AI is based on the deep learning to find process parameters that will produce a device having target electrical characteristics. The proposed simulator can control existing equipment via the Internet to fabricate devices with desired performance and, therefore, it will help engineers to develop new devices efficiently and effectively.

A study on The Improvement Plan of The Restricted Development Zone Monitoring system (개발제한구역 모니터링체계 개선방안 연구)

  • Lee, Se-won
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.17-36
    • /
    • 2022
  • The purpose of this study is to diagnose problems in the regulation and management of Restricted Development Zone and to prepare a construction plan to convert it to a data-based monitoring system. Unlike other land-use zones, the Restricted Development Zone is a exceptional zone that prohibits all development activities other than the minimum maintenance and must be strictly controlled and managed by the local government. However, the current Restricted Development Zone management is distributed according to the conditions of each local government, and it is not possible to monitor changes in the entire Restricted Development Zone as shown in the survey results. In particular, in this study, by introducing an AI-based monitoring system, MOLIT sends the results of detecting changes across the country at regular time points(monthly and quarterly) to the local governments based on the same regulation standards, and the local governments can be trusted while inputting the regulation results into the system. To propose this methodology, first, a survey and interview were conducted with local government officials and experts. Second, we analyzed cases in which AI analysis was applied to local governments and proposed a plan to improve the efficiency of regulation work according to the introduction of the monitoring system. Third, a plan was prepared to establish a monitoring system based on the advancement of the management information system. This monitoring system can be expanded and applied to land that needs periodic regulation and management in the future, and this study tried to propose a methodology and policy for this.

Single Image Super Resolution Based on Residual Dense Channel Attention Block-RecursiveSRNet (잔여 밀집 및 채널 집중 기법을 갖는 재귀적 경량 네트워크 기반의 단일 이미지 초해상도 기법)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.429-440
    • /
    • 2021
  • With the recent development of deep convolutional neural network learning, deep learning techniques applied to single image super-resolution are showing good results. One of the existing deep learning-based super-resolution techniques is RDN(Residual Dense Network), in which the initial feature information is transmitted to the last layer using residual dense blocks, and subsequent layers are restored using input information of previous layers. However, if all hierarchical features are connected and learned and a large number of residual dense blocks are stacked, despite good performance, a large number of parameters and huge computational load are needed, so it takes a lot of time to learn a network and a slow processing speed, and it is not applicable to a mobile system. In this paper, we use the residual dense structure, which is a continuous memory structure that reuses previous information, and the residual dense channel attention block using the channel attention method that determines the importance according to the feature map of the image. We propose a method that can increase the depth to obtain a large receptive field and maintain a concise model at the same time. As a result of the experiment, the proposed network obtained PSNR as low as 0.205dB on average at 4× magnification compared to RDN, but about 1.8 times faster processing speed, about 10 times less number of parameters and about 1.74 times less computation.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.