• Title/Summary/Keyword: 모멘트 불변량

Search Result 16, Processing Time 0.022 seconds

2-D Invariant Descriptors for Shape-Based Image Retrieval (모양에 기반한 영상 검색을 위한 2-D Invariant Descriptor)

  • 박종승;장덕호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.554-556
    • /
    • 1999
  • 모양 정보를 이용하는 내용기반 영상 검색 시스템에서 검색 정확도는 시스템에서 사용되는 모양 기술자에 매우 의존한다. 정확한 검색을 위해서 기술자는 이동, 회전, 스케일에 불변해야 한다. 본 논문에서는 모멘트 불변량과 푸리에 기술자를 복합적으로 사용하는 유사도 기법을 제시한다. 이 방법은 하나의 불변량 기술자를 사용하는 것보다 더 우수한 결과를 나타내었다. 푸리에 기술자와 네 개의 모멘트 불변량(Hu의 모멘트 불변량, Taubin의 모멘트 불변량, Flusser의 모멘트 불변량, Zernike 모멘트 불변량)을 구현하여 성능을 측정하였다. 영상분할된 이진 영상 데이터베이스로부터 각 기술자의 검색 정확도를 계산하였다. 실험 결과 경계선에 기초하는 푸리에 기술자와 영역에 기초하는 모멘트 불변량을 동시에 사용하는 방법이 영상 검색에 있어서 우수한 성능을 보였다.

  • PDF

Skeleton Tree for Shape-Based Image Retrieval (모양 기반 영상검색을 위한 골격 나무 구조)

  • Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.263-272
    • /
    • 2007
  • This paper proposes a skeleton-based hierarchical shape description scheme, called a skeleton tree, for accurate shape-based image retrieval. A skeleton tree represents an object shape as a hierarchical tree where high-level nodes describe parts of coarse trunk regions and low-level nodes describe fine details of boundary regions. Each node refines the shape of its parent node. Most of the noise disturbances are limited to bottom level nodes and the boundary noise is reduced by decreasing weights on the bottom levels. The similarity of two skeleton trees is computed by considering the best match of a skeleton tree to a sub-tree of another skeleton tree. The proposed method uses a hybrid similarity measure by employing both Fourier descriptors and moment invariants in computing the similarity of two skeleton trees. Several experimental results are presented demonstrating the validity of the skeleton tree scheme for the shape description and indexing.

Illumination Invariant Image Retrieval using Eigenvector Analysis (고유벡터 분석을 이용한 조명 불변 영상 검색)

  • 김용훈;이태홍
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.903-906
    • /
    • 2001
  • 본 논문에서는 조명의 변화에 의해 컬러 영상의 컬러 성분이 달라지더라도 영상 내 컬러간의 편차값을 나타내는 공분산 행렬(covariance matrix)의 고유벡터(eigenvector)와 영상 내 화소들의 컬러 성분과의 상관관계는 거의 변화하지 않는 특징을 이용한 조명 변화에 강인한 영상 검색 방법을 제안한다. 제안된 방법은 영상에서 컬러 성분들의 공분산 행렬과 공분산 행렬의 고유치(eigenvalue), 고유벡터를 계산한 후, 가장 큰 고유치에 관계된 고유벡터로 화소를 투영시키고, 투영된 벡터의 크기 성분으로 영상을 재구성한다. 재구성된 영상으로부터 7개의 불변 모멘트(moment)를 계산하고, 공분산의 가장 큰 고유치를 가중치로 부과하여 특징벡터를 추출한다. 7개의 불변 모멘트로부터 구한 특징벡터는 영상 내 물체의 이동, 영상의 회전, 크기 변화뿐만 아니라, 조명의 변화에 의해 컬러가 변화할 경우에도 유사한 영상을 잘 검색한다. 제안된 방법의 성능 확인을 위하여 5가지 조명에서 얻은 영상 데이터베이스를 이용하여 실험하였으며, 실험 결과 히스토그램 인터섹션에 비해 적은 특징량으로 검색이 가능하면서 조명 변화에도 대응할 수 있는 검색 결과를 얻을 수 있었다.

  • PDF

Multi-Level Content-Based Image Retrieval Technique Using Feature Information (특징 정보를 이용한 다단계 내용기반 영상 검색 기법)

  • 김봉기;오해석
    • Proceedings of the Korea Database Society Conference
    • /
    • 1998.09a
    • /
    • pp.395-405
    • /
    • 1998
  • 최근 멀티미디어 기술의 발전으로 인해 영상을 효율적으로 검색할 수 있는 영상 데이터베이스 시스템이 정보화 사회의 중요한 핵심 기술로 대두되고 있다. 본 논문에서는 내용기반 영상 데이터 검색을 위한 영상 특징 추출 방법으로 색상 정보와 모양 정보를 고려하는 다단계 영상 검색 시스템을 제안하였다. 1단계에서는 색상 정보론 얻기 위해서는 Striker 등이 제시한 색상 분포 특성을 이용한 색인 방법의 문제점을 보완하고 확장해서 지역 색상 분포 특성을 고려한 색인 방법을 사용하여 1차로 영상을 대분류한다. 2단계에서는 1단계에서 대분류된 집단 영상들에 대하여 2차로 모양 정보를 이용하여 사용자가 질의한 영상과 유사한 영상을 최종적으로 검색한다. 모양 정보를 얻기 위해서는 기존 불변 모멘트의 문제점인 많은 연산량과, Jain 등이 제시한 방향 히스토그램 인터섹션 방법에서 제기된 회전에 민감하다는 문제점을 해결하기 위해 물체의 윤곽선에 해당하는 화소들만을 대상으로 연산을 수행하는 향상된 불변 모멘트(Improved Moment Invariants : IMI)를 이용한다. 실험 영상으로 300개의 자동차 영상을 사용하여 기존 방법들과의 비교 실험을 통해 향상된 검색 결과를 얻을 수 있었다.

  • PDF

Multi-Level Image Retrieval Technique for Feature-Based Image Retrieval System (특징기반 영상 검색 시스템을 위한 다단계 영상 검색 기법)

  • 김봉기;신창둔;오해석
    • The Journal of Information Technology and Database
    • /
    • v.5 no.1
    • /
    • pp.85-96
    • /
    • 1998
  • 최근 멀티미디어 기술의 발전으로 인해 영상을 효율적으로 검색할 수 있는 영상 데이터베이스 시스템이 정보화 사회의 중요한 핵심 기술로 대두되고 있다. 본 논문에서는 내용기반 영상 데이터 검색을 위한 영상 특징 추출 방법으로 색상 정보와 모양 정보를 고려하는 다단계 영상 검색 시스템을 제안하였다. 제안된 시스템에서는 2단계로 이루어진다. 1단계에서는 색상 정보를 위해서 Striker 등이 제시한 색상 분포 특성을 이용한 색인 방법의 문제점을 보완하고 확장하여 지역 색상 분포 특성을 고려한 색인 방법을 사용하여 1차로 영상을 대 분류한다. 2단계에서는 1단계에서 대 분류된 집단 영상들에 대하여 2차로 모양 정보를 이용하여 사용자가 질의한 영상과 유사한 영상을 최종적으로 검색한다. 모양 정보를 위해서는 기존 불변 모멘트의 문제점인 많은 연산량과, Jain 등이 제시한 방향 히스토그램 인터섹션 방법에서 제기된 회전에 민감하다는 문제점을 해결하기 위해 물체의 윤곽선에 해당하는 화소들만을 대상으로 연산을 수행하는 향상된 불변 모멘트(Improved Moment Invariants: IMI)를 이용한다. 실험 영상으로 300개의 상표 영상을 사용하여 기존 방법들과의 비교 실험을 통해 향상된 검색 결과를 얻을 수 있었다.

  • PDF

Two-Stage Trademark Image Retrieval using Shape Feature and Direction Feature (형태 정보와 방향 정보를 이용한 2단계 상표 영상 검색)

  • Kim, Yu-Seon;Go, Byeong-Cheol;Lee, Hae-Seong;Byeon, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.8
    • /
    • pp.570-581
    • /
    • 2001
  • 본 논문에서는 윤곽선(edge) 기반의 형태 정보와 웨이브렛 변환(wavelet transform)에 의한 방향(direction) 정보를 사요하는데 2단계 상표 영상 검색 시스템을 제안한다. 1 단계에서는 후보 상표 영상을 추출하기 위해 영상의 전반적인 정보로 원 상표 영상(original trademark image)을 웨이브렛 변환하여 얻은 X, Y 방향 고주파(high frequency) 성분으로부터 구한 방향 정보와 영상의 윤곽선에 대해 모멘트를 구하는 향상된 불변 모멘트(improved invariant moment)를 이용한다. 2단계에서는 후부 영상들에 대해 영상의 세부 정보인 윤곽선 각도(edge angle)와 윤곽선 반지름(edge radius) 정보를 추출하여 유사도 측정 알고리즘을 통해 결과 영상을 산출하게 된다. 본 상표 영상 검색 시스템은 문자 색인으로는 색인이 용이 하지 않은 기하학적도형 상표 영상만을 사용하였다. 본 시스템에서는 색상과는 상관없는 특징인 형태 정보와 방향 정보만을 이용하므로 같은 색상 구성을 가진 유사 영상뿐만 아니라, 유사하지만 바탕이 반전된 영상이나 색상이 다른 유사 영상에 대해서도 바르게 검색할 수 있으며, 각 특징을 일반화해줌으로 이동.회전.크기 변화에도 불변하는 견고성을 가진다. 또한 효율적인 검색을 위해 2단계의 구조를 사용하였으며, 각 단계마다 계산량을 줄여 검색 시간을 감소시키도록 설계되었다.

  • PDF

Color Component Analysis For Image Retrieval (이미지 검색을 위한 색상 성분 분석)

  • Choi, Young-Kwan;Choi, Chul;Park, Jang-Chun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.403-410
    • /
    • 2004
  • Recently, studies of image analysis, as the preprocessing stage for medical image analysis or image retrieval, are actively carried out. This paper intends to propose a way of utilizing color components for image retrieval. For image retrieval, it is based on color components, and for analysis of color, CLCM (Color Level Co-occurrence Matrix) and statistical techniques are used. CLCM proposed in this paper is to project color components on 3D space through geometric rotate transform and then, to interpret distribution that is made from the spatial relationship. CLCM is 2D histogram that is made in color model, which is created through geometric rotate transform of a color model. In order to analyze it, a statistical technique is used. Like CLCM, GLCM (Gray Level Co-occurrence Matrix)[1] and Invariant Moment [2,3] use 2D distribution chart, which use basic statistical techniques in order to interpret 2D data. However, even though GLCM and Invariant Moment are optimized in each domain, it is impossible to perfectly interpret irregular data available on the spatial coordinates. That is, GLCM and Invariant Moment use only the basic statistical techniques so reliability of the extracted features is low. In order to interpret the spatial relationship and weight of data, this study has used Principal Component Analysis [4,5] that is used in multivariate statistics. In order to increase accuracy of data, it has proposed a way to project color components on 3D space, to rotate it and then, to extract features of data from all angles.

A Study on Feature Information Parsing of Video Image Using Improved Moment Invariant (향상된 불변모멘트를 이용한 동영상 이미지의 특징정보 분석에 관한 연구)

  • Lee, Chang-Soo;Jun, Moon-Seog
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.450-460
    • /
    • 2005
  • Today, multimedia information is used on the internet and various social areas by rapid development of computer and communication technology. Therefor, the usage is growing dramatically. Multimedia information analysis system is basically based on text. So, there are many difficult problems like expressing ambiguity of multimedia information, excessive burden of works in appending notes and a lack of objectivity. In this study, we suggest a method which uses color and shape information of multimedia image partitions efficiently analyze a large amount of multimedia information. Partitions use field growth and union method. To extract color information, we use distinctive information which matches with a representative color from converting process from RGB(Red Green Blue) to HSI(Hue Saturation Intensity). Also, we use IMI(Improved Moment Invariants) which target to only outline pixels of an object and execute computing as shape information.

  • PDF

The 2-Phase Image Retrieval Technique using The Color and Shape Information (색상과 모양 정보를 이용한 2단계 영상 검색 기법)

  • 김봉기;오해석
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.2
    • /
    • pp.173-182
    • /
    • 1998
  • As a result of remarkable developments in multimedia technology, the image database system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we proposed the 2-phase Image Retrieval System considering both color and shape information as the method of image features extraction for content-based image data retrieval. At the first level, to get color information, with improving and extending the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants (IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images. And we could obtain the more improved results through the comparative test with other methods.

  • PDF

A Implementation of the Feature-based Hierarchical Image Retrieval System (특징기반 계층적 영상 검색 시스템의 구현)

  • 김봉기;김홍준;김창근
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.60-70
    • /
    • 2000
  • As a result of remarkable developments in computer technology, the image retrieval system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we implemented the Hierarchical Image Retrieval System for content-based image data retrieval. At the first level, to get color information, with improving the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants(IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images And we could obtain the more improved results through the comparative test with other methods.

  • PDF