• Title/Summary/Keyword: 모래 다짐 말뚝 공법

Search Result 41, Processing Time 0.018 seconds

Mechanism on Bulb Formation of Compaction Pile Depending on Materials (재료에 따른 다짐말뚝 구근 형성 메커니즘)

  • Choi, Jeong Ho;Lee, Min Jy;Falcon, Sen Sven;Park, Seong Jin;Choo, Yun Wook;Kim, Il Gon;Kim, Byeong Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.25-37
    • /
    • 2022
  • In this paper, a small-scale model testing system was developed using a series of small-scale model tests to analyze the mechanism of compaction pile formation and evaluate the quality of controlled grading aggregates proposed as an alternative material to the sand compaction pile (SCP) method and granular compaction pile (GCP). These are the most typical ground improvement methods in field practice, particularly for soft grounds. However, the SCP has faced difficulties due to the supply shortage of natural sand and the corresponding price surge of sand. The GCP is limited in marine soft grounds because of the failure occurring at the pile tip caused by excessive expansion of the deeper bulbs, leading to uneven bulb formation. The uniformity of compacted pile bulbs is critical to ensuring the bearing capacity and quality of the compaction pile. This study aims to evaluate the performance of the new material and controlled grading aggregates using small-scale model tests simulating field compaction process to investigate its potential application in comparison with SCP. The compaction piles are examined in four cases according to different materials used for compaction pile and clay strength. The compaction pile materials, which are made of sand and controlled grading aggregates, used in this study were compared to reveal the mechanism of the bulb creation. The experimental data confirm that the bulb formation quality of the traditional sand and the new material, controlled grading aggregates are comparable. The compaction pile made of controlled grading aggregates presents higher bearing capacity than that of marine sand.

A Study on the Behavior of Sand Compaction Piles in Soft Ground (연약지반에 적용된 모래다짐말뚝의 거동특성에 관한 수치해석 연구)

  • Lee, Jungsang;Chung, sungrae;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.33-38
    • /
    • 2011
  • Presently, domestic SCP method with low replacement ratio is required as alternative in order to overcome the profitability of the sand resource because of the deficiency phenomenon of the sand resource by the actual condition design and construction is made by SCP method with low replacement ratio more than 70% for the port construction in the safe side. Sand compaction pile(SCP) method has been mainly used to improve the properties of soft clay or loose sandy ground. In design of SCP at soft clay ground, it is very important to determine the stress concentration ratio of composite ground relevant to the area replacement ratio. In this study, 2-dimensional FEM analyses were carried out to evaluate the stress concentration ratio of composite ground depending upon the area replacement ratio. When the interpretation result replacement ratio was 30%, the stress assigned rate showed and as the replacement ratio was high, the stress assigned rate according to the sinkage showed the low stress assigned rate.

Numerical Study of Settlement Reduction Ratio for the Bottom Ash Mixture Compaction Pile (수치해석적 방법에 의한 저회혼합다짐말뚝의 침하저감비에 관한 연구)

  • Chu, Ickchan;Kim, Gooyoung;Do, Jongnam;Cho, Hyunsoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.53-58
    • /
    • 2012
  • In general, sand compaction pile(SCP) method and gravel compaction pile(GCP) method have been mainly used to reinforce soft soils such as soft clay or loose sandy ground. But the sand compaction pile method has problems such as lack of sand supply and destroying the nature while collecting sand, the gravel compaction pile method has a problem such as decreased permeability of the drainage material due to clogging. Recently, the study to replace sand with bottom ash which has similar engineering properties with sand is in active. As a fundamental research on bottom ash mixture compaction pile utilizing bottom ash, its behavioral characteristics depending on granular materials and replacement ratio has been simulated numerically. In particular, Settlement Reduction Ratio(SRR) according to the distance from the center of pile was calculated. The main findings were as follows. Change values of Mixture Compaction Pile's SRR according to granular materials showed similar patterns and stiffness of the composite soil is increased depending on the replacement ratio so SRR showed decreased patterns. Especially, when the replacement ratio is in 20~40%, it increase significantly. When the replacement ratio is over 40%, it increase slowly. When considering the economics, 30~40% replacement ratio is appropriate.

Comparison of the Behavior Characteristics between Sand Compaction Pile and Pack Pile by the Triaxial Compression Tests (삼축압축시험을 통한 모래다짐말뚝 공법과 팩말뚝 공법의 거동특성 비교)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4012-4017
    • /
    • 2010
  • In this study, a series of triaxial compression tests(CU) were performed with artificially remolded sand-pack-clay and sand-clay composite soils at 10% and 20% replacement ratio to compare the shear strength and behavior characteristics between sand compaction pile and pack pile. From the test results, the shear strength of the pack pile is much higher than the that of the sand compaction pile.

Characteristics for Consolidation and Shear Strength of Bottom Ash Compaction Pile According to Replacement Ratio in Clay (점토지반에 적용된 저회다짐말뚝의 치환율에 따른 압밀침하특성 및 전단특성)

  • Park, Sehyun;Jee, Sunghyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.57-63
    • /
    • 2010
  • The necessity of effective and economical improvement for soft ground is required more and more as mountains form 70% of country. The soft ground improvement methods for ocean development are sand compaction pile method, displacement method are applied to the soft ground improvement from ocean development pre-loading method, air pressure method, well point method, pack drain method, quicklime pile method etc. Among them, the sand compaction pile method, has many problems such as the economical problem on importing materials due to the lack of sand and destroying the nature while collecting sand. To replace the sand with other alternative materials, a study on the bottom ash compaction pile method because the bottom ash has the similar engineering properties with sand. Therefore, in this study, after compose the complex soil with a replacement rate of 10~80% and a large direct shear test, shear test, consolidation test with replacement rates of bottom ash are performed to estimate whether its shear and consolidation characteristics are suitable for the alternative material of compaction pile method. As a result of test, Shear Strength Parameters tend to be increased in accordance with the increase of replacement ratio of bottom compaction pile, and Settlement Reduction Factor and $t_{90}$ tend to be decreased.

A State of the Art for the Vibrated Crushed-stone Compaction Pile (진동쇄석다짐말뚝공법의 기술적 수준)

  • Choi, Yong-Kyu;Kim, Won-Cheul;Jung, Chang-Kyu;Lee, Min-Hee;Kim, Tae-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.65-77
    • /
    • 2002
  • Based from the results of various field and laboratory tests, it was determined that VCCP(Vibrated Crushed-stone Compaction Pile) Method is more effective compared to SCP(Sand Compaction Pile) Method. VCCP method effectively increases soil bearing capacity and reinforces soil and slopes, prevents liquefaction, enhances drainage. But when it comes to the engineering design these factors are not considered, instead designs are performed using practical methods and equations. Furthermore, this method is very economical since crushed stone can be used instead of sand and it can be also used in off-shore construction. In this paper, it will be synthetically considered technical state at the present time, research object after this and necessity of research for VCCP Method.

  • PDF

Liquefaction of Embankments on Sandy Soils and the Optimum Countermeasure against the Liquefaction (사질토 지반 위에 축조된 제방의 액상화 및 최적 대책 공법)

  • Park, Young-Ho;Kim, Sung-Ryul;Kim, Sung-Hwan;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.15-21
    • /
    • 2000
  • 액상화되기 쉬운 모래지반 위에 축조된 제방의 지진시 거동을 조사하고 액상화 경감을 위한 대책공법의 효과를 비교하기 위하여 12가지 경우에 대해 진돈대 시험을 수행하였다. 본 시험에는 널말뚝, 자갈배수재, 모래다짐 말뚝과 강관말뚝 등의 대책공법이 적용되었다. 진동대 시험에 사용된 투명토조의 길이는 194cm이고 폭은 44cm 그리고 높이는 60cm이다. 기초지반은 포화된 모래이며 수중침강법을 적용하여 상대밀도 약 30%로 조성되었다. 이 포화된 느슨한 모래지만 위에 15cm 높이의 제방이 경사 1:1.5로 축조되었다. 진동대 시험시 제방과 기초지반의 거동을 측정하기 위해서 간극수압계 12개, 가속도계 4개 및 LVDT 2개가 시험모델에 설치되었다. 진동대의 크기는 2m$\times$2m이며, 진동시의 입력가속도는 0.1g에서 시작하여 최고 0.4g까지 증가시켰다. 본 모델에 적용된 공법 모두가 일반적인 진동법위에서 액상화 발생을 억제시키는데 유용한 것으로 증명이 되었으며, 그 중에서 모래다짐말뚝이 액상화로 인한 피해를 감소시키는데 가장 효과적인 것으로 나타났다. 또한 각각의 대책공법에 대한 최적 배치안의 본 연구에서 제시되었다.

  • PDF

A Study of Field Test on Bearing Capacity Increase Effect of Single Stone Column (단일쇄석말뚝의 지지력 증가효과에 관한 현장실험 연구)

  • Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.5-11
    • /
    • 2007
  • Among soft ground improvement methods by using granular material, the sand compaction pile method has been widely utilized in Korea, but, as a result of shortage and increase of unit price of sand, a necessity of an alternative method has been required. In this study, a series of in-situ static load tests for crushed-stone compaction piles were performed. Pile diameter was fixed to 700mm and areas of loading plates were changed. The static load tests were performed for area replacement ratios of 20, 30 and 40% respectively. Based on the test results, bearing capacity of single crushed-stone compaction pile was estimated. It showed that the settlement decreases as the replacement ratio increases. Also, a yielding capacity equation of the crushed-stone compaction pile considering replacement ratio was suggested.

Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio (저치환율 모래다짐말뚝에 의한 복합지반의 응력분담거동에 대한 실험적 연구)

  • 유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.253-261
    • /
    • 2003
  • Mechanical behavior of composition pound improved by sand compaction pile (SCP) with low replacement area ratio could be more significantly affected by mechanical interaction between sand piles and clays than that of clay ground improved by SD or SCP with high replacement area ratio. It is essential to elucidate the mechanical interaction in the improved clay ground, in order to accurately estimate behavior in reducing settlement of the improved ground and increasing strength of clays. In this paper, through a series of model tests of composition ground improved by SCP with low replacement area ratio, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing behavior between sand piles and clays.