• Title/Summary/Keyword: 모드 관측도

Search Result 355, Processing Time 0.032 seconds

On the Number of Modes Required to Observe Forces in Flexible Structures (유연 구조물에서 반력 평가를 위해 요구되는 모드의 수)

  • Kim, Joo-Hyung;Kim, Sang-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.150-157
    • /
    • 2002
  • The number of required modes to provide accurate force information in a truncated model of a flexible structure is investigated. In the case of modal truncation of a distributed parameter system, the difference in convergence rates between displacements and forces is discussed. The residual flexibility. a term from past literature, is used to recapture some of the lost force information in a truncated model. This paper presents numerical and experimental results of a study where the residual flexibility is used in conjunction with a Kalman filter so that accurate force information may be obtained from a small set of displacement measurements wish a reduced-order model. The motivation for this paper is to be able to obtain accurate information about unmeasurable dynamic reaction forces in a rotating machine for diagnostic and control purposes.

디지털 3차원 실물 복제기의 고속 고 정밀 제어

  • 이민철;김정수;유기성;이원희;김동수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.304-304
    • /
    • 2004
  • 오피스용 3차원 실물 복제기는 개발자에게 좀 더 라르고 효율적인 작업 환경을 구현해 줌으로 해서 산업 전반에 많은 영향을 주게 될 것이다. 기존의 오피스용 3차원 실물 복제기는 가격이 고가여서 실제적으로 일반 사무용으로 사용되기는 어려웠다. 하지만 저 가격의 고속 고 정밀 오피스용 3차원 실물 복제기가 국내 기술에 의해 개발된다면 시장변화에 민감한 제품의 개발이나 최근 빨라진 제품의 생산 주기에 효율적으로 대처 할 수 있을 것이다. 이러한 오피스용 3차원 실물 복제기는 무엇보다도 기존의 국외 오피스용 3차원 실물 복제기 보다 저 띠용이어야 하며 고속의 성능을 가지고 있어야 한다.(중략)

  • PDF

Design of a New Adaptive Sliding Mode Observer for Sensorless Induction Motor Drive (센서리스 유도전동기를 위한 새로운 슬라이딩 모드 관측기의 설계)

  • 김상민;한우용;김성중
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.522-527
    • /
    • 2003
  • This paper proposes a new speed and flux estimation method which has the robustness against the variation of the electrical parameters of the motor and the superiority in the dynamic characteristics. In the proposed method, the stator currents and the rotor fluxes are observed on the stationary reference frame using the sliding mode concept. And the rotor speed is estimated using the current estimation errors and the observed rotor fluxes based on the Lyapunov stability theory. Also a design method of the observer gain is proposed to minimize the effect of the speed estimation error on the rotor flux observation. The experimental results are shown to verify that the proposed method shows the excellent performances under the variations of motor resistance and inductance.

Design of $H_{\infty}$ Observer-Based Sliding Mode Controller for Power System Stabilizer : Part II (전력계통안정기를 위한 $H_{\infty}$ 관측기에 기준한 슬라이딩 모드 제어기 설계 : Part II)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1159-1161
    • /
    • 1997
  • This paper presents a power system stabilizer(PSS) using the $H_{\infty}$ observer-based sliding mode controller($H_{\infty}$ observer-based SMC) for unmeasurable state variables. The effectiveness of the proposed $H_{\infty}$ observer-based SMPSS for unmeasurable state variables is shown by the simulation result.

  • PDF

Sensorless Speed Control of Permanent Magnet Synchronous Motor by an Improved Sliding Mode Observer (개선된 슬라이딩 모드 관측기에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • Kim Young-Sam;Ryu Sung-Lay;Kwon Young-Ahn
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.687-690
    • /
    • 2004
  • Many studies have been performed for the elimination of speed and position sensors which require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. This paper investigates an improved sliding mode observer for the sensorless speed control of a permanent magnet synchronous motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-response control. The proposed algorithm is verified through the simulation and experimentation.

Sensorless Speed Control of PMSM using an Adaptive Sliding Mode Observer (적응 슬라이딩 모드 관측기를 이용한 영구자석 동기전동기의 센서리스 속도제어)

  • Han, Yun-Seok;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.83-91
    • /
    • 2002
  • This paper presents a new speed and position sensorless control method of permanent magnet synchronous motors based on the sliding mode observer. Since the parameter of the dynamic equation such as machine inertia or viscosity friction coefficient are not well known and these values can be easily changed generally during normal operation, there are many restrictions in the actual implementation. The proposed adaptive sliding mode observer applies adaptive scheme so that observer may overcome the problem caused by using the dynamic equation. Furthermore, using the Lyapunov Function, the adaptive sliding mode observer can estimate rotor speed as well as stator resistance. The feasibility of the Proposed observer is verified cia the experiments.

Sensorless Control of SRM using Evoultion-Sliding-Mode Observer (진화 슬라이딩 모드 관측기를 이용한 SRM의 센서리스 제어)

  • Park, Jin-Hyun;Park, Han-Woong;Jun, Hyang-Sik;Jung, Kee-Haw;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2255-2257
    • /
    • 2001
  • This paper introduces a indirect rotor position and speed estimation algorithm for the SRM(switched reluctance motor) sensorless control, based on the sliding mode observer. The information of position and speed is generally provided by encoder or resolver. However, the position sensor not only adds complexity, cost, and size to the whole drive system, but also causes limitation for industrial applications. In this paper, in order to eliminate the position sensor, indirect position sensing method using sliding mode observer is used for SRM drives. And this observer parameters are optimized by evolutionary algorithm. PI controller is also optimized for the SRM to track precisely using evolutionary algorithm.

  • PDF

Adaptive Sliding Mode Observer for the Control of Switched Reluctance Motors without Speed and Position Sensors (적응 슬라이딩 모드 관측기를 이용한 SRM의 속도 및 위치 센서 없는 제어)

  • Shin, Jae-Hwa;Yang Iee-Yoo;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.763-770
    • /
    • 2000
  • The speed and position information of the rotor are required in the speed control of SRM(Switched Reluctance Motors). This information is generally provided by shaft encoder or resolver. It is weak in the dusty, high temperature, and EMI environment. Consequntly, much attention has been given to SRM control for eliminationating the position and speed sensors. In this paper, a new estimation algorithm for the rotor position and speed for SRM drives is described. The algorithm is implemented by the sliding mode observer. The stability and robustness of the sliding observer for the parameter variations of the SRM are proved by variable structure control theory. Speed control of the SRM is accomplished by the estimated speed and position. Experiment results verify that the mode observer is able to estimate the speed and position well.

  • PDF

Design of Adaptive Sliding Observer for Sensorless Induction Motor Drive (센서리스 유도전동기를 위한 개선된 적응 슬라이딩 모드 관측기의 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Kim, Seong-Jung;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1138-1141
    • /
    • 2003
  • This paper proposes a new speed and flux estimation method which has the robustness against the variation of the electrical parameters of the motor and the superiority in the dynamic characteristics compared with the conventional sensorless schemes. In the proposed method, the stator currents and the rotor fluxes are observed on the stationary reference frame using the sliding mode concept. And the rotor speed is estimated using the current estimation errors and the observed rotor fluxes based on the Lyapunov stability theory. Also a design method of the observer gain is proposed to minimize the effect of the speed estimation error on the rotor flux observation. The experimental results verified that the proposed method shows more robust and improved performances than the previous estimation method under the variations of motor resistance and inductance.

  • PDF

A Robust Position Control of a Brushless Direct Drive Motor Using a Variable Structure Control with Sliding Mode Observer (슬라이딩 모드 관측기를 가지는 가변구조제어를 사용한 직접구동용 브러쉬없는 직류전동기의 강인한 위치제어)

  • Chung, Se-Kyo;Hong, Chan-Ho;Lee, Dae-Sik;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1041-1043
    • /
    • 1993
  • A robust position control scheme for a Brushless Direct Drive Motor(BLDDM) is presented. To obtain the robustness under the load variation, a Variable Structure Controller(VSC) is used. However, the VSC has a chattering problem and require the full state informations. To overcome this problem, in this paper, the sliding mode observer is used for compensating the load disturbance and estimating the motor velocity. As a result, the VSC for a BLDDM posision control is designed by using only position measurment and the chattering problem is greatly reduced. To show the validaty of the proposed scheme, the simulation study is carried out.

  • PDF