• Title/Summary/Keyword: 모드행렬

Search Result 166, Processing Time 0.023 seconds

An Extendable Fixed-Complexity Sphere Decoder for Downlink Multi-User MIMO Communication System (하향링크 다중 사용자 MIMO 통신 시스템을 위한 확장형 고정복잡도 스피어 복호기)

  • Koo, Jihun;Kim, Yongsuk;Kim, Jaeseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.180-187
    • /
    • 2014
  • In this paper, a extension of a fixed-complexity sphere decoder (FSD) to perform interference signal detection and cancelling is proposed for downlink multiuser multiple input-multiple output (MIMO) communication system. It is based on the application of channel matrix expansion on generalized sphere decoder (GSD), and modification of the channel matrix ordering scheme to a FSD algorithm for interference detection. A Monte Carlo simulation shows that the proposed algorithm improves the receiver performance by 3 dB as compared to maximum likelihood detection without interference cancelling at 10% packet error rate in configuration of 702 Mbit/s datarate for four users respectively on IEEE802.11ac.

Performance Evaluation of DC-Suppression GS Coding for the Holographic Data Storage Using Integer Programming Models (정수계획법 모형을 이용한 홀로그래픽 저장장치의 DC-억압 GS코딩의 성능평가)

  • Park, Taehyung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.650-655
    • /
    • 2013
  • For the DC-free encoding of source data, the Guided Scrambling (GS) technique is widely used as multi-mode coding in the optical data storage system. For DC-suppression GS coding in the holographic data storage system, the conservative array and balanced coding criteria are proposed. In this paper, equivalent integer programming models are developed to determine the optimal control bits for the minimum digital sum value (MDSV), conservative array, and balanced coding criteria. Using the proposed integer programming models, we compare the performance of GS encoding for the various combination of control bit/array sizes and scrambling polynomials.

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.

Matched Field Source Localization and Interference Suppression Using Mode Space Estimation (정합장 기반 표적 위치추정 시 모드공간 분석을 통한 간섭 신호 제거 기법)

  • Kim, Kyung-Seop;Seong, Woo-Jae;Pyo, Sang-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2008
  • Weak target detection and localization in the presence of loud surface ship noise is a critical problem for matched field processing (MFP) in shallow water. For stationary sources, each signal component of received signal can be separated and interference can be suppressed using eigen space analysis schemes. However, source motion, in realistic cases, causes spreading of signal energies in their subspace. In this case, eigenvalues of target and interfere signal components are mixed and hard to be separated with usual phone space eigenvector decomposition (EVD) approaches. Our technique is based on mode space and utilizes the difference in their physical characteristics of surface and submerged sources. Performing EVD for modal cross spectral density matrix, interference components in the mode amplitude subspace can be classified and eliminated. This technique is demonstrated with synthetic data, and results are discussed.

A Study on a Sliding Mode Control Algorithm for Dynamic Positioning System of a Vessel (선박의 동적위치유지 시스템을 위한 Sliding Mode 제어 연구)

  • Young-Shik Kim;Jang-Pyo Hong
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.256-270
    • /
    • 2023
  • In this study, a sliding mode (SM) controller for dynamic positioning (DP) was specifically designed for a turret connection operation of a ship or an offshore structure in which an arbitrary point on the structure could be controlled as the motion center instead of the center of mass. The SM controller allows control of the arbitrary point and provides capability to manage uncertainties in the dynamics of ships and offshore structures, external forces caused by unknown changing marine environments, and transient performance of DP systems. The Jacobian matrix included in kinematic equations of the controlled object was modified to design the SM controller to control based on an arbitrary point of ships or offshore structures. To ensure robustness of the controller, the Lyapunov stability theory was applied in the design of the SM controller. In general, for robustness in DP control, gain scheduling based on a proportional-derivative (PD) control algorithm is employed. However, finding appropriate gains for gain scheduling complicates the application of DP systems. Therefore, in this study, the SM control algorithm was considered to mitigate the complexity of the DP controller for ships and offshore structures. To validate the proposed SM control algorithm, time-domain simulations were conducted and utilized to evaluate the performance of the control algorithm. The effectiveness of the proposed SM controller was assessed by comparing simulation results with results of a conventional PD control algorithm applied in DP control.

Vibration Characteristics of Pipe Element Containing Moving Medium by a Transfer Matrix (전달행렬을 이용한 유동매체를 가진 배관요소의 진동특성 분석)

  • 이영신;천일환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.366-375
    • /
    • 1991
  • In this study, vibrational behavior of uniform pipe carrying a moving medium is studied by using a transfer matrix and the displacement function derived from the conventional beam theory. In various boundary conditions, flow velocity and mechanical property change of the variation of natural frequency are investigated. The Coriolis term in the original differential equation of motion has been ignored in the investigation. This method is used to study the variation of natural frequency with flow velocity for clamped-clamped, cantilevered, clamped-pinned, pinned-pinned, free-free straight pipe element. It is shown that clamped-clamped, free-free pipe have the highest natural frequency and critical velocity values while cantilevered pipe have the smallest natural frequency for the same mechanical properties. From the vibration effects of mechanical property variation, it is shown that bending stiffness and pipe length variation has large influence on natural frequency and critical velocity. Since the order of transfer matrix is not changed with boundary conditions of pipe element, this method proposed can be easily applied to personal-computer for vibration analysis of pipe element. Furthermore, this method can be extended to three-dimensional system by using a coordinate transformation for the analysis of piping systems.

Investigation on Guided Wave Dispersion Characteristics for Metal Thin Films (금속 박막의 유도초음파 분산 특성 연구)

  • Kim, Miso;Cho, Seung Hyun;Jang, Gang-Won;Lee, Seung-Seok;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.233-240
    • /
    • 2014
  • In this study, we investigated the dispersion characteristics of guided waves in thin films. Dispersion curves are essential for understanding not only the behavior of ultrasonic waves, but also the mechanical properties of thin films. Matrix techniques are presented for modeling ultrasonic waves in multilayered structures before being used to calculate the dispersion curves for Al-steel and Al-composite specimens. When compared with the dispersion curves obtained using the commercial program (Disperse), the dispersion curves generated from the transfer matrix method show its validity. These developed methods are used to obtain dispersion curves for Al thin films deposited on a Si substrate. The resulting dispersion curves enable observation of both dispersive and non-dispersive behavior for the guided waves, depending on the thickness of the thin films.

Prediction and Evaluation of Progressive Failure Behavior of CFRP using Crack Band Model Based Damage Variable (Crack Band Model 기반 손상변수를 이용한 탄소섬유강화 복합재료 적층판의 점진적 파손 거동 예측 및 검증)

  • Yoon, Donghyun;Kim, Sangdeok;Kim, Jaehoon;Doh, Youngdae
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • In this paper, a progressive failure analysis method was developed using the Hashin failure criterion and crack band model. Using the failure criterion, the failure initiation was evaluated. If the failure initiation is occurred, the damage variables at each failure modes (fiber tension & compression, matrix tension & compression) was calculated according to linear softening degradation behavior and the variables are used to derive the damaged stiffness matrix. The damaged stiffness matrix is reflected to damaged material and the progressive failure analysis is continued until the damage variables to be 1 that complete failure of material. A series of processes were performed using FE commercial code ABAQUS with user defined material subroutine (UMAT). To evaluate the proposed progressive failure model, the experimental results of open hole composite laminate tests was compared with numerical result. Using digital image correlation system, the strain behavior also was compared. The proposed numerical results were coincided well with the experimental results.

The Geometrical Analysis of Vibration Modes and Frequency Responses of an Elastically Suspended Optical Disc Drive (탄성적으로 지지된 광디스크 드라이버의 진동모드와 주파수 응답의 기하적 해석)

  • Dan, Byeong-Ju;Choe, Yong-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.362-369
    • /
    • 2000
  • Via screw theory, a vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as a twisting motion on a screw in a three dimensional space. In thi s paper, applying the conditions that can be used to diagonalize the stiffness matrix by a parallel axis congruence transformation, the vibration modes and frequency response of an elastically suspended optical disc drive have been analyzed. It is first shown that the system has one plane of symmetry, which enables one to decouple the complicated vibration modes into two sets of modes independent of each other. Having obtained the analytical solutions for the axes of vibrations, the frequency response for a given applied input force has been demonstrated. Most importantly, it has been explained that this research result could be used in the synthesis process of a linear vibration system in order to improve the frequency response.

Steering Angle Error Compensation Algorithm Appropriate for Rapidly Moving Sources (빠른 속도로 기동하는 표적 환경에 적합한 조향각 오차 보정기법)

  • 박규태;박도현;이정훈;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.206-213
    • /
    • 2004
  • This paper presents a steering angle error compensation (SAEC) algorithm that is appropriate for rapidly moving sources. The Proposed algorithm utilizes a modal covariance matrix from multiple frequency components instead of the multiple snapshots in a narrowband SAEC, and estimates the steering error by maximizing the wideband WVDR output power using a first-order Taylor series approximation of the modal steering vector in terms of the steering error. As such, the steering error can be compensated with short observation times. Several simulations using artificial and sea trial data are used to demonstrate the Performance of the proposed algorithm.