• Title/Summary/Keyword: 모드분석

Search Result 2,492, Processing Time 0.032 seconds

A Study on Inhibition of Bacterial Membrane Formation in Biofilm formed by Acne Bacteria in Valine through Property Analysis (물성 분석을 통한 Valine 의 여드름균 바이오필름 내부 세균막 형성 억제 연구)

  • Song, Sang-Hun;Hwang, Byung Woo;Son, Seongkil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.163-170
    • /
    • 2021
  • This study was conducted to create a technology to remove acne bacteria with human-friendly materials. First, the Cutibacterium acnes (C. acnes) were adsorbed to the mica disc to grow, and then the biofilm was checked through an atomic microscope to see if the biofilm had grown. Based on the topographic image, the shape changed round, the size was 17% longer on average, and the phase value of the resonance frequency separating materials was observed as a single value, the biofilm grown by covering the extracellular polymeric substrate (EPS). As a result of processing 50 mM of amino acids in the matured biofilm, the concentration of C. acnes decreased when valine, serine, arginine and leucine were treated. Scanning with nanoindentation and AFM contact modes confirmed that the hardness of biofilms treated with Valine (Val) increased. This indicates that an AFM tip measured cell which may have more solidity than that of EPS. The experiment of fluorescent tagged to EPS displays an existence of EPS at the condition of 10 mM Val, but an inhibition of growth of EPS at the 50 mM Val. Number of C. acnes was also reduced above 10 mM of Val. Weak adhesion of biofilm generated from an inhibition of EPS formation seems to induce decrease of C. acnes. Accordingly, we elucidated that Val has an efficiency which eliminates C. acnes by approach of an inhibition of EPS.

Mechanical evaluation of SiC-graphite interface of seed crystal module for growing SiC single crystals (탄화규소 단결정 성장을 위한 종자결정모듈의 탄화규소-흑연 간 접합계면의 기계적 특성 평가)

  • Kang, June-Hyuk;Kim, Yong-Hyeon;Shin, Yun-Ji;Bae, Si-Young;Jang, Yeon-Suk;Lee, Won-Jae;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.212-217
    • /
    • 2022
  • Large thermal stress due to the difference between silicon carbide and graphite's coefficients of thermal expansion could be formed during crystal growing process of silicon carbide (SiC) at high temperature. The large thermal stress could separate the SiC seed crystals from graphite components, which bring about the drop of the seed crystal during crystal growth. However, the bonding properties of SiC seed crystal module has hardly reported so far. In this study, SiC and graphite were bonded using 3 types of bonding agents and a three-point bending tests using a mixed-mode flexure test were conducted for the bonded samples to evaluate the bonding characteristics between SiC and graphite. Raman spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray Computed Tomography were used to analyze the bonding characteristics and the microstructures of the SiC-graphite interfaces bonded with the bonding agents. As results, an excellent bonding agent was chosen to fabricate SiC seed crystal module with 50 mm in diameter. An SiC single crystal with 50 mm in diameter was successfully grown without falling out during top seeded solution growth of SiC at high temperature.

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

Operation Case of Mechanical Engineering Subject Applying Systematic Engineering Design Approach: Design of Golf Ball Dispenser (체계적 공학설계 방법론을 적용한 기계공학 교과목 운영 사례: 골프공디스펜서 설계)

  • Ryu, Sun-Joong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.235-244
    • /
    • 2022
  • In this study, a class operation case of an engineering design project targeting a golf ball dispenser, a commercial product, was presented. The project was carried out according to the systematic engineering design approach suggested by Kim Jong-won and W. Beitz. This method broadly divides engineering design into four stages: 'product planning → conceptual design → basic design → detailed design'. In particular, the conceptual design stage is divided into 'functional structure diagram → detailed working principle exploration → various design alternatives creation → optimal design selection'. In the conceptual design, the input/output of the golf ball dispenser was defined and a functional structure diagram was prepared for it. Through this process, it was possible to subdivide the functions of the product and to easily explore the working principle for each. The searched working principles are devised as various design alternatives by various combinations, and for each proposal, the advantages and disadvantages were compared with each other to derive the optimal design alternative. In the basic design, the prototype layout was completed through failure mode analysis and the actual prototype was manufactured using it. Through the entire process, students participating in the class will be able to design commercial products in a systematic way and experience manufacturing prototypes within the department of mechanical engineering curriculum.

Structural Performance Evaluation of Reinforced Concrete Column Reinforced with Aramid Fibers and PET Fibers (아리미드섬유와 PET섬유시트로 보강한 철근콘크리트 기둥의 구조성능평가)

  • Dong-Hwan Kim;Min-Su Jo;Jin-Hyeung Choi;Woo-Rae Cho;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • This study evaluates the performance of reinforced concrete columns using hybrid fiber sheets for structural behavior. The purpose of this method is to improve the load-bearing capacity of the reinforced structure by impregnating a hybrid fiber sheet, which is woven by arranging aramid and glass fibers uniaxially and attached to an aged concrete structure requiring reinforcement with epoxy. In particular, not only the weight reduction of the material obtained by using a fiber lighter than the steel material, but also the low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element. The low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element, resulting in weight reduction compared to steel. The study conducted structural tests on four specimens, with the hybrid reinforcement method and failure mode as main variables. Specimen size and loading conditions were chosen to be comparable with previous studies. The structural performance of the specimen was evaluated using energy dissipation capacity and ductility. Analysis shows that excellent results can be obtained with the hybrid fiber sheet reinforcement.

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screen Doors are Installed (I) - Analysis on Smoke Control Performance on the Platform (스크린도어가 설치된 대심도 지하역사의 제연 실험 I - 승강장에서의 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin;Kwon, Tae-Soon;Lee, Duck-Hee
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.485-496
    • /
    • 2018
  • In this paper, the smoke behavior in an underground station on operation of the fans in the ventiliation of the station was measured by the experimental method when the fire occurred in the underground station platform where the platfrom screen door was installed. The ventilation characteristics were compared when the ventilation system was operated and when the ventilation system was not operated when a fire occurred at the platform where the clean door was closed. To simulate the fire smoke, the smoke generated from the smoke generator was heated using a hot air fan. The transmittance was measured using a smoke density meter to quantitatively measure fire smoke. If the screen door is closed and the ventilation system of the underground station does not work, it is confirmed that if a fire occurs in the platform, smoke accumulates inside the platform, evacuating passengers is very difficult and can lead to a very dangerous situation. On the other hand, under the condition that the ventilation facility of the subway station is operated, the smoke evacuates to the outside through the ventilation facility of the underground station, and airflow is formed in the direction from the waiting room to the waiting area, so that the passenger located on the platform can safely evacuate toward the concourse. In the following paper, we will discuss the concurrent effect of tunnel ventilation through tunnel vent near the platform.

Inelastic Dynamic Analysis of Structure Subjected to Across-Wind Load (풍직각방향 풍하중이 작용하는 구조물의 비탄성 동적 해석)

  • Ju-Won Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • In this study, fluctuating wind velocity for time history analysis is simulated by a single variate, single-dimensional random process using the KBC2022 spectrum about across-wind direction. This study analyzed and obtained the inelastic dynamic response for structures modeled as a single-degree-of-freedom system. It is assumed that the wind response is excellent in the primary mode, the change in vibration owing to plasticization is minor, along-wind vibration and across-wind vibration are independent, and the effect of torsional vibration is small. The numerical results, obtained by the Newmark-𝛽 method, shows the time-history responses and trends of maximum displacements. As a result of analyzing the inelastic dynamic response of the structure with the second stiffness ratio(𝛼) and yield displacement ratio (𝛽) as variables, it is identified that as the yield displacement ratio (𝛽) increases when the second stiffness ratio is constant, the maximum displacement ratio decreases, then reaches a minimum value, and then increases. When the stiffness ratio is greater than 0.5, there is a yield point ratio at which the maximum displacement ratio is less than 1, indicating that the maximum deformation is reduced compared to the elastically designed building even if the inelastic behavior is permitted in the inelastic wind design.

Minimum Design Thickness of Prestressed Concrete Deck Slabs for Composite Two-Girder Bridges (강합성 2거더교 프리스트레스트 바닥판의 설계 최소두께)

  • Hwang, Hoon Hee;Joh, Changbin;Kwark, Jong Won;Lee, Yong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.183-190
    • /
    • 2006
  • Minimizing the self weight of long-span deck slabs is one of the key factors for the practical and economic design of a composite two-girder bridge. In this paper, the minimum design thickness and rebar details of prestressed concrete deck slabs for composite two-girder bridges with girder span length from 4 m to 12 m are studied based on the safety and serviceability. The bridge deck slab with minimum thickness is designed as a one-way slab considering orthotropic behavior. Then fatigue safety of the deck slab is examined. Serviceability requirements for the deck slab such as deflection and crack width limits are also examined. The result shows that rebars with diameter less than 16 mm is recommended for the improved fatigue behavior, and, for the deck slab with span length longer than 8 m, the deflection limit governs the minimum design thickness. The result also shows that, for the deck slab with span length longer than 4 m, the distribution rebar requirement in the current Korea Highway Bridge Design Code is not sufficient to maintain the structural continuity in bridge axis as expected from the deck slab with span length shorter than 3 m.

A Study on the Application of the Price Prediction of Construction Materials through the Improvement of Data Refactor Techniques (Data Refactor 기법의 개선을 통한 건설원자재 가격 예측 적용성 연구)

  • Lee, Woo-Yang;Lee, Dong-Eun;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.66-73
    • /
    • 2023
  • The construction industry suffers losses due to failures in demand forecasting due to price fluctuations in construction raw materials, increased user costs due to project cost changes, and lack of forecasting system. Accordingly, it is necessary to improve the accuracy of construction raw material price forecasting. This study aims to predict the price of construction raw materials and verify applicability through the improvement of the Data Refactor technique. In order to improve the accuracy of price prediction of construction raw materials, the existing data refactor classification of low and high frequency and ARIMAX utilization method was improved to frequency-oriented and ARIMA method utilization, so that short-term (3 months in the future) six items such as construction raw materials lumber and cement were improved. ), mid-term (6 months in the future), and long-term (12 months in the future) price forecasts. As a result of the analysis, the predicted value based on the improved Data Refactor technique reduced the error and expanded the variability. Therefore, it is expected that the budget can be managed effectively by predicting the price of construction raw materials more accurately through the Data Refactor technique proposed in this study.

A Study on the Appropriate School Placement in Urban Development Area - Centerde on Sejong Special Self-Governing City - (도시개발지역 학교 적정배치 방안 연구 - 세종특별자치시를 중심으로 -)

  • Son, Byung-Gil;Lee, Yong-Hwan
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.22 no.4
    • /
    • pp.9-17
    • /
    • 2023
  • This study explores school location, school environment, educational conditions, and appropriate scale of schools in the context of Sejong City's development area and identifies effective school establishment plans based on the analysis of the needs of the educational community. The research questions for this study include, first, what is the change trend in the number of students as a result of the opening of schools in the development area of Sejong City to the present, and what differences are there between Sejong and other new cities? Second, what challenges arise in school location due to the occurrence of oversized schools and undergraduate institutions? Third, what challenges arise in school location that would limit the ability to create a safe school environment? Fourth, what aspects need to be improved in school location decisions to promote proper placement? A survey was conducted among parents and faculty members to collect data. The findings revealed that first, when establishing a school, identifying an appropriate location for the school was the top priority of the respondents. The second was the proximity of the school to dense housing, with a parent drop zone next to the school site. Third, to address the issue of lack of playgrounds and special class and care classes, respondents called for various measures such as securing school sites within a certain area. Finally, integrated operation schools and school facilities are required in preparation for decreasing school-age populations due to low birth rates.