• Title/Summary/Keyword: 모듈러 건축공사

Search Result 38, Processing Time 0.025 seconds

A Study on the Design Model of Modular Building System for Disaster Restorations in Fishing and Agrarian Villages (농어촌 재해복구용 모듈러 건축물의 설계안 연구)

  • Lim, Jae-Han
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.9 no.3
    • /
    • pp.33-45
    • /
    • 2007
  • Recently, large scale disasters have been occurred in rural areas. Most people suffering from the disaster live in the temporary containers. These could not provide the fundamental occupancy performances such as thermal insulation, ventilation and heating system. It is very important to rebuild the residence for sufferers quickly and safely. Because modular building system has some advantages such as short construction time, mobility, light-weight structure, modularity, flexibility and economical efficiency, it is expected that it could be easily applied to the disaster restoration. So, this research aims at developing the design model of modular building system for disaster restorations in fishing and agrarian villages. For this purpose, current counterplan for restoration was firstly investigated. Also the basic guideline was established through the investigation of current status of residence in fishing and agrarian villages. Finally, 2 types of design model such as single story residence and temporary accommodation facility were proposed. We could see that we could make the flexible building plan when applying the modular building system to the temporary housing for the sufferers.

  • PDF

A Study on modular construction method in military facilities (모듈러 공법을 적용한 군시설공사의 개선방안에 관한 연구)

  • Park, Jae-Sig;Park, Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.642-647
    • /
    • 2006
  • Recently Ministry of National Defense is reconstructing old facilities using modular construction method for enhancing soldiers' quality of living. In the future, the use of modular construction method is expected to be increased. But in beginning stage as ROK military facilities that was built by modular was not designed and constructed efficiently, problems for pilot projects need to be analyzed by phases and construction methods should be improved. For the maximized efficiency, design should be made to minimize on-site works, factory automation in an assembly plant should be installed for the better productivity, roads that will be used for transportation should be checked, and joint and connection methods between modules in on-site assembly should be improved for a better quality.

  • PDF

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.

Flexible Unit Floor Plan of a Modular House Considering the Production System (생산 시스템을 고려한 모듈러주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2021
  • After World War II, modular housing was developed as a means of quickly and efficiently meeting the housing supply demand. For the past 30 plus years, efforts have been made to improve modular housing in South Korea and to increase their competitiveness in the housing market. This study investigated modular houses based on a steel framed rahem structure which provides a flexible floor plan where walls are easily reconfigured to create rooms of various sizes and functions. Similar to the factory production methods used in the automotive industry, the modular housing industry can also benefit by standardizing such aspects as building components, manufacturing and construction methods, materials, process management, and floor plans. This study examined the feasibility of using a 3m × 3m module for developing various floor plans which are easy to produce and transport. Each 3m × 3m module can be configured to meet different living needs resulting in a complete home when multiple modules are connected. The module configurations can be varied to meet ground transportation and crane limitations. This study found that a 3m × 3m steel framed modular unit is a promising step towards providing residents with plans that meet their living preferences while improving and increasing the supply of modular houses.

Decision Making Model Using Multiple Matrix Analysis for Optimum Transportation Equipment Selection of Modular Construction (다중매트릭스 분석기법을 통한 모듈러 건축의 최적 운송장비 선정 의사결정지원 모델)

  • Lee, HyunJeong;Lee, JooSung;Lim, Jitaek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.84-94
    • /
    • 2020
  • Modular architecture is very important not only in the design phase but also in the construction planning phase because it affects construction methods and module sizes depending on transport equipment. There are economic risks as well as quality, as there may be defects such as internal interiors or elimination of deadlines during transportation, and structural torsion caused by rainfall and shock. However, there is a lack of objective criteria or data to refer to in determining transport equipment that has a material effect on transport. Accordingly, there is no decision model to determine the optimum transportation equipment for each construction site. Therefore, it is necessary to develop a decision support model that can be compared to the review of transport equipment selection factors. The purpose of this study is to propose the transport equipment impact factors and decision support models for systematic review and objective decision making of each construction plan in the construction of small and medium-sized modulators. The decision model proposed in this study can be used as basic data for transport studies, ensuring objectivity and transparency in the equipment selection process.

Structural Performance of Beam-Middle Column Connection of 12m × 3m Steel Modular System (12m × 3m 스틸 모듈러 시스템의 보-중간기둥 접합부 구조성능)

  • Shim, Sung Chul;Lee, Sang Hyun;Jo, Bong Ho;Woo, Sung Sik;Choi, Mun Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.793-805
    • /
    • 2008
  • Recently, steel modular systems are developed and have been applied to the projects requiring fast construction such as military barracks and vertical expansion of school buildings. The existing modular system with standard module of ${6m\times3m}$ has a problem that many columns are duplicated in the module connection and the wall thickness increases. In this study, $12m{\times}3m$ module is proposed to solve this problem. Various types of beam-middle column connection which are essential for realizing the $12m{\times}3m$ module are proposed and their maximum load capacity and failure mode are analytically and experimentally evaluated. The comparison between analytical and experimental results shows that the maximum axial load and failure mode can be accurately estimated by finite element analysis. Some connection types which have higher failure load than the design load of the column, can be used as the beam-middle column connection detail of the $12m{\times}3m$ module.

A Study on the Planning Approaches for Newly Constructed Purchased Rental Housing Utilizing Volumetric Modular Construction (모듈러 공법을 활용한 신축매입임대주택 계획방안 연구)

  • Ji-Eun Lee
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.129-140
    • /
    • 2024
  • This research explores the potential of purchased rental housing as a versatile solution for residential development. By focusing on smaller-scale construction compared to large residential complexes, purchased rental housing projects offer benefits such as shorter project durations and enhanced flexibility to accommodate residents' needs. This public-private collaboration extends to community planning, enabling tailored models beyond traditional rental housing frameworks. Currently, purchased rental housing, which is predominantly comprised of multi-unit house, multi-household house, and rowhouses, is in high demand and in short supply in metropolitan areas. Utilizing volumetric modular housing, considerations for module size and transportability are paramount, while advancements in construction methods, particularly prefabrication, offer efficiency and quality benefits. This study proposed three construction techniques to plan modular housing models and enhance construction and demolition efficiency: planning without columns in the middle of the unit, core production using volumetric modular construction methods, and industrialization of construction components alongside dry construction methods. Utilizing these methods, a new construction model for purchase lease housing was presented to address the need for new housing in the context of ageing housing renovation and demand fluctuations. The model comprises 16 units, with sizes ranging from 36 m2 to 54 m2, and can be applied on sites larger than 600 m2 with access to roads wider than 6 m. This promotes cluster-style development, which in turn increases construction efficiency in nearby plots.

Development of Hybrid Panel with C-shaped Steel Beam at Top and Bottom of Precast Concrete Wall (프리캐스트 콘크리트 벽체의 상하부에 C형강 보가 결합된 복합 패널의 개발)

  • Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.435-442
    • /
    • 2017
  • A lateral load resisting system is a necessary structural element for the mid- to high-rise modular buildings and concrete cores are known as the most typical lateral load resisting systems in 10- to 20-story modular buildings. It is difficult to construct a concrete core simultaneously with the installation and finishing work of modular units because concrete placed using wet methods might contaminate or destroy the modular unit. Therefore, we have developed a hybrid PC (precast concrete) panel construction method that can construct a concrete core together with the installation of modular units. The hybrid PC panel is a load-bearing element in which a pair of C-shaped beams are combined at the top and bottom of a concrete wall. Concrete cores can be constructed by dry method to connect the hybrid PC panels with bolts. In this study, the details and connection of hybrid PC panels are improved to have the lateral performance comparable to reinforced concrete structural walls and are verified through FE analysis.