• 제목/요약/키워드: 모두의 말뭉치

검색결과 41건 처리시간 0.021초

메신저 맞춤법 교정 병렬 말뭉치의 구축과 쟁점 (Construction of a Parallel Corpus for Instant Messenger Spelling Correction and Related Issues)

  • 황은하;안진산;남길임
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.545-550
    • /
    • 2022
  • 본 연구의 목적은 2021년 메신저 언어 200만 어절을 대상으로 수행된 맞춤법 교정 병렬 말뭉치의 설계와 구축의 쟁점을 소개하고, 교정 말뭉치의 주요 교정 및 주석 내용을 기술함으로써 맞춤법 교정 병렬 말뭉치의 특성을 분석하는 것이다. 2021년 맞춤법 교정 병렬 말뭉치의 주요 목표는 메신저 언어의 특수성을 살림과 동시에 형태소 분석이나 기계 번역 등 한국어 처리 도구가 분석할 수 있는 수준으로 교정하는 다소 상충되는 목적을 구현하는 것이었는데, 이는 교정의 수준과 병렬의 단위 설정 등 상당한 쟁점을 내포한다. 본 연구에서는 말뭉치 구축 시점에서 미처 논의하지 못한 교정 수준의 쟁점과 교정 전후의 통계적 특성을 함께 논의하고자 하며, 다음과 같은 몇 가지 하위 내용을 중심으로 논의하고자 한다.첫째, 맞춤법 교정 병렬 말뭉치의 구조 설계와 구축 절차에 대한 논의로, 2022년 초 국내 최초로 공개된 한국어 맞춤법 교정 병렬 말뭉치('모두의 말뭉치'의 일부)의 구축 과정에서 논의되어 온 말뭉치 구조 설계와 구축 절차를 논의한다. 둘째, 문장 단위로 정렬된 맞춤법 교정 말뭉치에서 관찰 가능한 띄어쓰기, 미등재어, 부호형 이모티콘 등의 메신저 언어의 몇 가지 특성을 살펴본다. 마지막으로, 2021년 메신저 맞춤법 교정 말뭉치의 구축 단계에서 미처 논의되지 못한 남은 문제들을 각각 데이터 구조 설계와 구축 차원의 주요 쟁점을 중심으로 논의한다. 특히 메신저 맞춤법 병렬 말뭉치의 주요 목표인 사전학습 언어모델의 학습데이터로서의 가치와 메신저 언어 연구의 기반 자료 구축의 관점에서 맞춤법 교정 병렬 말뭉치 구축의 의의와 향후 과제를 논의하고자 한다.

  • PDF

모두의 말뭉치를 이용한 한국어 다의어 분별 (Korean Polysemy Word-Sense-Disambiguation using MoDu-Corpus)

  • 신준철;이주상;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.205-210
    • /
    • 2020
  • 한국어 자연어처리 분야가 발달하면서 동형이의어 분별을 한 단계 넘어선 다의어 분별의 중요성이 점점 상승하고 있다. 최근에 다의어가 태깅된 "모두의 말뭉치"가 발표되었고, 이 말뭉치는 다의어가 태깅된 최초의 공개 말뭉치로써 다의어 연구가 본격적으로 진행될 수 있음을 의미한다. 본 논문에서는 이 말뭉치를 학습하여 작동하는 다의어 분별의 초기 모델을 제시하며, 이 모델의 실험 결과는 차후 연구를 위한 비교 기준점이 될 수 있다. 이 모델은 딥러닝을 사용하지 않은 통계형으로 개발되었고, 형태소분석과 동형이의어 분별은 기존의 UTagger로 해결하고 말뭉치 자원 외에도 UWordMap을 사용하여 다의어 분별을 보조하였다. 이 모델의 정확률은 약 87%이며, 다의어 분별 전에 형태소분석 또는 동형이의어 분별 단계에서 오류가 난 것을 포함한다. 현재까지 공개된 이 말뭉치는 오직 명사만 다의어 주석이 있기 때문에 명사만 정확률 측정 대상이 되었다. 이 연구를 통하여 다의어 분별의 어려움과, 다의어 분별에는 동형이의어 분별과는 다른 방법이 필요하다는 것을 확인할 수 있었다.

  • PDF

말뭉치 기반 부분 어절 기분석 사전의 구축과 형태소 분석 (Construction of Partial Word Morpheme Dictionary based on Tagged Corpus and Korean Morphological Analysis)

  • 신준철;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.67-72
    • /
    • 2011
  • 기존의 말뭉치 기반 한국어 형태소 분석 방법은 대용량의 어절 기분석 사전을 사용하여 분석하고, 그 사전에 없는 어절은 코드 변환, 형태소 분리, 원형 복원 규칙 적용 등을 거치는 복잡한 분석 방법을 통해 후보들을 생성했다. 이 복잡한 분석 방법은 제작과 유지보수, 실행 관점 모두에서 효율적이지 못하며 정확률을 낮추고 속도를 느리게 하는 요인이 된다. 이런 문제를 해결하기 위해 부분 어절의 기분석 사전을 구축하여 사용하는 방법이 연구되었다. 본 논문에서는 대용량의 분석 말뭉치를 통해 부분 어절의 기분석 사전을 구축하고 형태소 분석에 사용하는 방법을 제안한다. 세종 말뭉치로 실험한 결과 재현율이 99.05%였으며, 품사 및 동형이의어 태깅 정확률은 96.76%였다.

  • PDF

한국어와 영어의 명사구 기계 번역 (Korea-English Noun Phrase Machine Translation)

  • 조희영;서형원;김재훈;양성일
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.273-278
    • /
    • 2006
  • 이 논문에서 통계기반의 정렬기법을 이용한 한영/영한 양방향 명사구 기계번역 시스템을 설계하고 구현한다. 정렬기법을 이용한 기계번역 시스템을 구축하기 위해서는 않은 양의 병렬말뭉치(Corpus)가 필요하다. 이 논문에서는 병렬 말뭉치를 구축하기 위해서 웹으로부터 한영 대역쌍을 수집하였으며 수집된 병렬 말뭉치와 단어 정렬 도구인 GIZA++ 그리고 번역기(decoder)인 PARAOH(Koehn, 2004), RAMSES(Patry et al., 2002), MARIE(Crego et at., 2005)를 사용하여 한영/영한 양방향 명사구 번역 시스템을 구현하였다. 약 4만 개의 명사구 병렬 말뭉치를 학습 말뭉치와 평가 말뭉치로 분리하여 구현된 시스템을 평가하였다. 그 결과 한영/영한 모두 약 37% BLEU를 보였으나, 영한 번역의 성공도가 좀더 높았다. 앞으로 좀더 많은 양의 병렬 말뭉치를 구축하여 시스템의 성능을 향상시켜야 할 것이며, 지속적으로 병렬 말뭉치를 구축할 수 있는 텍스트 마이닝 기법이 개발되어야 할 것이다. 무엇보다도 한국어 특성에 적합한 단어 정렬 모델이 연구되어야 할 것이다. 또한 개발된 시스템을 다국어 정보검색 시스템에 직접 적용해서 그 효용성을 평가해보아야 할 것이다.

  • PDF

한국어 의존 구문 분석의 분석 단위에 관한 실험적 연구 (Empirical Research on Segmentation Method for Korean Dependency Parsing)

  • 이진우;조혜미;박수연;신효필
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.427-432
    • /
    • 2021
  • 현재 한국어 의존 구문 분석의 표준은 어절 단위로 구문 분석을 수행하는 것이다. 그러나 의존 구문 분석의 분석 단위(어절, 형태소)에 대해서는 현재까지 심도 있는 비교 연구가 진행된 바 없다. 본 연구에서는 의존 구문 분석의 분석 단위가 자연어 처리 분야의 성능에 유의미한 영향을 끼침을 실험적으로 규명한다. STEP 2000과 모두의 말뭉치를 기반으로 구축한 형태소 단위 의존 구문 분석 말뭉치를 사용하여, 의존 구문 분석기 모델 및 의존 트리를 입력으로 활용하는 문장 의미 유사도 분석(STS) 및 관계 추출(RE) 모델을 학습하였다. 그 결과, KMDP가 기존 어절 단위 구문 분석과 비교하여 의존 구문 분석기의 성능과 응용 분야(STS, RE)의 성능이 모두 유의미하게 향상됨을 확인하였다. 이로써 형태소 단위 의존 구문 분석이 한국어 문법을 표현하는 능력이 우수하며, 문법과 의미를 연결하는 인터페이스로써 높은 활용 가치가 있음을 입증한다.

  • PDF

말뭉치 자원 희소성에 따른 통계적 수지 신호 번역 문제의 해결 (Addressing Low-Resource Problems in Statistical Machine Translation of Manual Signals in Sign Language)

  • 박한철;김정호;박종철
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.163-170
    • /
    • 2017
  • 통계적 기계 번역을 이용한 구어-수화 번역 연구가 활발해짐에도 불구하고 수화 말뭉치의 자원 희소성 문제는 해결되지 않고 있다. 본 연구는 수화 번역의 첫 번째 단계로써 통계적 기계 번역을 이용한 구어-수지 신호 번역에서 말뭉치 자원 희소성으로부터 기인하는 문제점들을 해결할 수 있는 세 가지 전처리 방법을 제안한다. 본 연구에서 제안하는 방법은 1) 구어 문장의 패러프레이징을 통한 말뭉치 확장 방법, 2) 구어 단어의 표제어화를 통한 개별 어휘 출현 빈도 증가 및 구어 표현의 번역 가능성을 향상시키는 방법, 그리고 3) 수지 표현으로 전사되지 않는 구어의 기능어 제거를 통한 구어-수지 표현 간 문장 성분을 일치시키는 방법이다. 서로 다른 특징을 지닌 영어-미국 수화 병렬 말뭉치들을 이용한 실험에서 각 방법론들이 단독으로 쓰일 때와 조합되어 함께 사용되었을 때 모두 말뭉치의 종류와 관계없이 번역 성능을 개선시킬 수 있다는 것을 확인할 수 있었다.

어휘정보와 통사정보를 모두 이용한 문서분류 (Text Categorization Using Both Lexical Information and Syntactic Information)

  • 박성배;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.37-39
    • /
    • 2001
  • 현재 이용가능한 대부분의 자동문서분류 시스템의 가장 큰 문제는 문서에 포함된 단어 사이의 통사 정보는 무시한 채, 각 단어의 분포만 고려한다는 점이다. 하지만, 통사 정보도 문서 분류를 위해 매우 중요한 정보 중의 하나이다. 본 논문에서는 문서에 나타난 어휘 정보와 함께 통사 정보를 함께 고려하는 자동문서분류 방법을 제시한다. Reuters-21578 말뭉치에 대한 문서분류 실험결과 제시된 방법은 어휘정보만 사용하는 방법과 통사정보만 사용하는 방법 모두보다 높은 성능을 보인다 이 말뭉치에 대해서, 어휘정보만으로 학습된 Support Vector Machine으로 약 77%의 매우 높은 정확도를 얻을 수 있음에도 약 0.63%의 추가적인 성능 향상이 있었다.

  • PDF

Enhancement of a language model using two separate corpora of distinct characteristics

  • 조세형;정태선
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.357-362
    • /
    • 2004
  • 언어 모델은 음성 인식이나 필기체 문자 인식 등에서 다음 단어를 예측함으로써 인식률을 높이게 된다. 그러나 언어 모델은 그 도메인에 따라 모두 다르며 충분한 분량의 말뭉치를 수집하는 것이 거의 불가능하다. 본 논문에서는 N그램 방식의 언어모델을 구축함에 있어서 크기가 제한적인 말뭉치의 한계를 극복하기 위하여 두개의 말뭉치, 즉 소규모의 구어체 말뭉치와 대규모의 문어체 말뭉치의 통계를 이용하는 방법을 제시한다. 이 이론을 검증하기 위하여 수십만 단어 규모의 방송용 말뭉치에 수백만 이상의 신문 말뭉치를 결합하여 방송 스크립트에 대한 퍼플렉시티를 30% 향상시킨 결과를 획득하였다.

한국어 시간정보추출 연구를 위한 언어자원 및 시스템 구축 (Constructing a Korean Language Resource and Developing a Temporal Information Extraction System for Korean Documents)

  • 임채균;오교중;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.636-638
    • /
    • 2018
  • 본 논문에서는 영어권에 비해 상대적으로 부족한 한국어 언어자원을 지속적으로 구축함으로써 한국어 문서로 구성된 시간정보 주석 말뭉치를 확보하고 이를 바탕으로 한국어 시간정보추출 시스템에 대한 연구를 수행한다. 말뭉치 구축 과정에서의 시간정보 주석 작업은 가이드라인을 숙지한 주석자들이 수작업으로 기록하고, 어떤 주석 결과에 대해 의견이 다른 경우에는 중재자가 주석자들과 함께 검토하며 합의점을 도출한다. 시간정보추출 시스템은 자연어 문장에 대한 형태소 분석결과를 이용하여 시간표현(TIMEX3), 시간관계와 연관된 사건(EVENT), 시간표현 및 사건들 간의 시간관계(TLINK)를 추출하는 단계로 이루어진다. 추출된 한국어 시간정보는 문서 내 공통된 개체에 대한 공간정보와 결합함으로써 시공간정보가 모두 반영된 SPOTL을 생성한다. 추후 실험을 통하여 제안시스템의 구체적인 시간정보추출 성능을 파악할 것이다.

  • PDF

자율 학습을 이용한 선형 정렬 말뭉치 구축 (Construction of Linearly Aliened Corpus Using Unsupervised Learning)

  • 이공주;김재훈
    • 정보처리학회논문지B
    • /
    • 제11B권3호
    • /
    • pp.387-394
    • /
    • 2004
  • 본 논문에서는 자을 선형 정렬 알고리즘을 이용하여 선형 정렬 말뭉치를 구축하는 방법을 제안한다. 기존의 자율 선형 정렬 알고리즘을 이용하여 선형 정렬 말뭉치를 구축할 경우, 두 문자열의 길이가 서로 다르면 정렬된 두 문자열(입력열과 출력열)에 모두 공백문자가 나타난다. 이 방법을 그대로 사용하면 정렬 말뭉치의 구축은 용이하나 정렬된 말뭉치를 이용하는 응용 시스템에서는 탐색 공간이 기하급수적으로 늘어날 뿐 아니라 구축된 정렬 말뭉치는 다양한 기계학습 방법에 두루 사용될 수 없다는 문제가 있다. 본 논문에서는 이들 문제를 최소화하기 위해서 입력열에는 공백문자가 나타나지 않도록 기존의 자을 선형 정렬 알고리즘을 수정하였다. 이 알고리즘을 이용해서 한영 음차 표기 및 복원, 영어 단어의 발음 생성, 영어 발음의 단어 생성, 한국어 형태소 분리 및 복원을 위한 정렬 말뭉치를 구축하였으며, 간단한 실험을 통해, 그들의 실용성을 입증해 보였다.