• Title/Summary/Keyword: 모델 이해

Search Result 2,808, Processing Time 0.031 seconds

Face Recognition and Preprocessing Technique for Speaker Identification in hard of hearing broadcasting (청각장애인용 방송에서 화자 식별을 위한 얼굴 인식 알고리즘 및 전처리 연구)

  • Kim, Nayeon;Cho, Sukhee;Bae, Byungjun;Ahn, ChungHyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.450-452
    • /
    • 2020
  • 본 논문에서는 딥러닝 기반 얼굴 인식 알고리즘에 대해 살펴보고, 이를 청각장애인용 방송에서 화자를 식별하고 감정 표현 자막을 표출하기 위한 배우 얼굴 인식 기술에 적용하고자 한다. 우선, 배우 얼굴 인식을 위한 방안으로 원샷 학습 기반의 딥러닝 얼굴 인식 알고리즘인 ResNet-50 기반 VGGFace2 모델의 구성에 대해 이해하고, 이러한 모델을 기반으로 다양한 전처리 방식을 적용하여 정확도를 측정함으로써 실제 청각장애인용 방송에서 배우 얼굴을 인식하기 위한 방안에 대해 모색한다.

  • PDF

A Gradient-Based Explanation Method for Graph Convolutional Neural Networks (그래프 합성곱 신경망에 대한 기울기(Gradient) 기반 설명 기법)

  • Kim, Chaehyeon;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.670-673
    • /
    • 2022
  • 설명가능한 인공지능은 딥러닝과 같은 복잡한 모델에서 어떠한 원리로 해당 결과를 도출해냈는지에 대한 설명을 함으로써 구축된 모델을 이해할 수 있도록 설명하는 기술이다. 최근 여러 분야에서 그래프 형태의 데이터들이 생성되고 있으며, 이들에 대한 분류를 위해 다양한 그래프 신경망들이 사용되고 있다. 본 논문에서는 대표적인 그래프 신경망인 그래프 합성곱 신경망(graph convolutional network, GCN)에 대한 설명 기법을 제안한다. 제안 기법은 주어진 그래프의 각 노드를 GCN을 사용하여 분류했을 때, 각 노드의 어떤 특징들이 분류에 가장 큰 영향을 미쳤는지를 수치로 알려준다. 제안 기법은 최종 분류 결과에 영향을 미친 요소들을 gradient를 통해 단계적으로 추적함으로써 각 노드의 어떤 특징들이 분류에 중요한 역할을 했는지 파악한다. 가상 데이터를 통한 실험을 통해 제안 방법은 분류에 가장 큰 영향을 주는 노드들의 특징들을 실제로 정확히 찾아냄을 확인하였다.

An Artificial Neural Network for Efficiently Learning and Representation the Advection and Remove of Fire-Flake Particles (불똥 입자의 이류과 삭제를 효율적으로 학습 표현하는 인공신경망)

  • Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.345-348
    • /
    • 2022
  • 본 논문에서는 유체 시뮬레이션(Fluid simulation)중 화염에서 표현되는 불똥 입자(Fire-flake particle)의 생성, 움직임과 삭제를 효율적으로 학습하고 표현할 수 있는 인공지능 기법에 대해 소개한다. 유체 시뮬레이션을 계산하기 위해서는 일반적으로 수치해석학과 같은 학문의 이해가 필요하며 불똥이나 거품과 같은 유체의 2차 효과(Secondary effect)는 기반유체(Underlying fluids)를 통해 추출되기 때문에 복잡하고 계산양이 많아진다. 이러한 문제를 완화하고자 본 논문에서는 인공신경망을 이용한 분류 모델 학습을 통해 격자 내에서 표현되어야 하는 불똥 입자의 생성을 학습하고, 다항 회귀 모델 학습을 통해 불똥 입자의 움직임을 예측한다. 또한, 불똥 입자가 삭제되어야하는 상태를 네트워크 학습을 통해 얻어내며, 수명(Lifespan) 임계값 조절하여 다양한 장면에서 불똥을 제어할 수 있다. 결과적으로 화염의 움직임을 기반으로 불똥의 움직임을 복잡한 수학식이나 디자이너에게 의존하지 않고 인공지능 학습을 통해 쉽게 제어하고 예측하는 결과를 보여준다.

  • PDF

Proposal of diagnosis rule mapping model to support public data quality diagnosis (공공데이터 품질진단 지원을 위한 진단규칙 매핑모델 제안)

  • Jeong, Ha-Na;Kim, Jae-Woong;Lee, Yun-Yeol;Chae, Yi-Geun;Chung, Young-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.127-128
    • /
    • 2022
  • 정부는 공공데이터 개방을 통해 신산업, 일자리 창출 등 경제 활성화를 위한 도구로 활용하는 것을 목표로 한다. 정부는 고품질의 공공데이터 보유를 위하여 품질 개선 활동을 통해 공공데이터 품질 향상을 진행하고 있다. 그러나 공공데이터 품질관리 수준 진단을 진행하는 담당자의 데이터에 대한 전문성과 이해도에 따라 품질진단 결과에 격차가 발생하여 진단 결과의 신뢰성을 보장하기 어렵다. 본 논문은 공공데이터의 원활한 품질진단 지원을 위해 품질진단규칙 매핑 모델을 제안하여 공공데이터 품질진단의 안정성과 신뢰성을 높인다.

  • PDF

Information Video Summarization and Keyword-based Video Tracking System (정보성 동영상 요약 및 키워드 기반 영상검색 시스템)

  • Gihun Kim;Mikyeong Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.701-702
    • /
    • 2023
  • 비대면 교육이 증가함에 따라 강의, 특강과 같은 정보성 동영상의 수가 급격히 많아지고 있다. 이러한 정보성 동영상을 보아야 하는 학습자들은 자원과 시간을 효율적으로 활용할 수 있는 동영상 이해 및 학습 시스템이 필요하다. 본 논문에서는 GPT-3 모델과 KoNLPy 사용하여 동영상 요약을 수행하고 키워드 기반 해당 영상 프레임으로 바로 갈 수 있는 시스템의 개발내용에 대해 기술한다. 이를 통해 동영상 콘텐츠를 효과적으로 활용하여 학습자들의 학습 효율성을 향상시킬 수 있을 것으로 기대한다.

  • PDF

Bringing Characters to Life: AI Chatbot (캐릭터를 현실로: AI 챗봇)

  • Junghye Min;Sang-Hun Kim;Ji-Min Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.25-27
    • /
    • 2023
  • 본 논문에서는 캐릭터 챗봇을 학습시키고, 학습된 모델을 React 기반 웹 페이지에 통합하는 것을 목표로 한다. 웹 페이지 사용자들은 실시간으로 게임이나 영화 캐릭터와 대화할 수 있는 기능을 제공받게 된다. 캐릭터 챗봇은 사용자의 질문을 이해하고 학습된 캐릭터의 특성에 따라 적절한 응답을 생성함으로써 상호작용하게 된다. 사용자가 웹 페이지에서 입력한 질문이나 요청은 챗봇 모델을 통해 처리되며, AI 챗봇은 학습된 지식과 데이터를 활용하여 응답을 생성한다. 사용자는 웹 페이지에서 자연스러운 대화를 통해 원하는 캐릭터와 대화를 이어갈 수 있게 된다.

  • PDF

ASR (Automatic Speech Recognition)-based welfare information search model to prevent digital alienation of the elderly (고령층의 디지털 소외 방지를 위한 ASR(Automatic Speech Recognition, 음성 인식 기술) 기반 복지 정보 검색 모델 연구)

  • Jang-Won Ha;Hwa-Rang Im;Dong-Gue Jung;Hye-won Lee;Youngjong Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.771-772
    • /
    • 2023
  • 복지 정보와 인터넷 사용에 대한 이해도가 낮은 고령층의 디지털 소외 문제를 해결하고자, 고령층 친화 UI/UX 및 음성 인식 기술 등의 기술을 활용한 <고령층의 디지털 소외 방지를 위한 ASR 기반 복지 정보 검색 모델>의 개발을 제안한다.

Applying intrabinary shock model to various X-ray observation data

  • Sim, Minju;An, Hongjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.52.1-52.1
    • /
    • 2021
  • Low mass X-ray binary(LMXB) 중 accretion disk가 존재하지 않으며 매우 작은 질량 (1 ≪ M)의 동반성을 가지는 pulsar binary system에서 중성자별과 동반성의 항성풍은 상호작용하여 intrabinary shock(IBS)을 형성한다. 이곳에서 입자들은 상대론적으로 가속되어 싱크로트론 복사를 방출한다고 생각된다. 이 복사는 X-선 영역으로 관측되며 이때 관측된 X-선 궤도 광도곡선은 IBS의 모양에 따라 달라진다. 우리는 IBS의 X-선 복사 과정을 모델화하여 shock의 모양과 내부의 전자 특성을 파악하고, 광학 관측을 통해 얻은 orbital parameter와 비교하며 binary의 geometry를 보다 정확히 이해하고자 한다. 이 발표에서는 다양한 pulsar binary system의 Chandra, XMM 그리고 NuSTAR의 X-선 관측 데이터에 IBS 모델을 적용해보고 IBS와 binary의 geomerty를 분석한 결과를 제시한다.

  • PDF

Generating Premise-Hypothesis-Label Triplet Using Chain-of-Thought and Program-aided Language Models (Chain-of-Thought와 Program-aided Language Models을 이용한 전제-가설-라벨 삼중항 자동 생성)

  • Hee-jin Cho;Changki Lee;Kyoungman Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.352-357
    • /
    • 2023
  • 자연어 추론은 두 문장(전제, 가설)간의 관계를 이해하고 추론하여 함의, 모순, 중립 세 가지 범주로 분류하며, 전제-가설-라벨(PHL) 데이터셋을 활용하여 자연어 추론 모델을 학습한다. 그러나, 새로운 도메인에 자연어 추론을 적용할 경우 학습 데이터가 존재하지 않거나 이를 구축하는 데 많은 시간과 자원이 필요하다는 문제가 있다. 본 논문에서는 자연어 추론을 위한 학습 데이터인 전제-가설-라벨 삼중항을 자동 생성하기 위해 [1]에서 제안한 문장 변환 규칙 대신에 거대 언어 모델과 Chain-of-Thought(CoT), Program-aided Language Models(PaL) 등의 프롬프팅(Prompting) 방법을 이용하여 전제-가설-라벨 삼중항을 자동으로 생성하는 방법을 제안한다. 실험 결과, CoT와 PaL 프롬프팅 방법으로 자동 생성된 데이터의 품질이 기존 규칙이나 기본 프롬프팅 방법보다 더 우수하였다.

  • PDF

Conversation Context-Aware Backchannel Prediction Model (대화 맥락을 반영한 백채널 예측 모델)

  • Yong-Seok Choi;Yo-Han Park;Wencke Liermann;Kong Joo Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.263-268
    • /
    • 2023
  • 백채널은 화자의 말에 언어 및 비언어적으로 반응하는 것으로 상대의 대화 참여를 유도하는 역할을 한다. 백채널은 보편형 대화 참여와 반응형 대화 참여로 나뉠 수 있다. 보편형 대화 참여는 화자에게 대화를 장려하도록 하는 단순한 반응이다. 반면에 반응형 대화 참여는 화자의 발화 의도를 파악하고 그에 맞게 반응하는 것이다. 이때 발화의 의미를 파악하기 위해서는 표면적인 의미뿐만 아니라 대화의 맥락을 이해해야 한다. 본 논문에서는 대화 맥락을 반영한 백채널 예측 모델을 제안하고 예측 성능을 개선하고자 한다. 대화 맥락을 요약하기 위한 방법으로 전체 요약과 선택 요약을 제안한다. 한국어 상담 데이터를 대상으로 실험한 결과는 현재 발화만 사용했을 때보다 제안한 방식으로 대화 맥락을 반영했을 때 성능이 향상되었다.

  • PDF