• Title/Summary/Keyword: 모델 이해

Search Result 2,815, Processing Time 0.031 seconds

Preservice teacher's understanding of the intention to use the artificial intelligence program 'Knock-Knock! Mathematics Expedition' in mathematics lesson: Focusing on self-efficacy, artificial intelligence anxiety, and technology acceptance model (수학 수업에서 예비교사의 인공지능 프로그램 '똑똑! 수학 탐험대' 사용 의도 이해: 자기효능감과 인공지능 불안, 기술수용모델을 중심으로)

  • Son, Taekwon
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.401-416
    • /
    • 2023
  • This study systematically examined the influence of preservice teachers' self-efficacy and AI anxiety, on the intention to use AI programs 'knock-knock! mathematics expedition' in mathematics lessons based on a technology acceptance model. The research model was established with variables including self-efficacy, AI anxiety, perceived ease of use, perceived usefulness, and intention of use from 254 pre-service teachers. The structural relationships and direct and indirect effects between these variables were examined through structural equation modeling. The results indicated that self-efficacy significantly affected perceived ease of use, perceived usefulness, and intention to use. In contrast, AI anxiety did not significantly influence perceived ease of use and perceived usefulness. Perceived ease of use significantly affected perceived usefulness and intention to use and perceived usefulness significantly affected intention to use. The findings offer insights and strategies for encouraging the use of 'knock-knock! mathematics expedition' by preservice teachers in mathematics lessons.

Verification of educational goal of reading area in Korean SAT through natural language processing techniques (대학수학능력시험 독서 영역의 교육 목표를 위한 자연어처리 기법을 통한 검증)

  • Lee, Soomin;Kim, Gyeongmin;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • The major educational goal of reading part, which occupies important portion in Korean language in Korean SAT, is to evaluated whether a given text can be fully understood. Therefore given questions in the exam must be able to solely solvable by given text. In this paper we developed a datatset based on Korean SAT's reading part in order to evaluate whether a deep learning language model can classify if the given question is true or false, which is a binary classification task in NLP. In result, by applying language model solely according to the passages in the dataset, we were able to acquire better performance than 59.2% in F1 score for human performance in most of language models, that KoELECTRA scored 62.49% in our experiment. Also we proved that structural limit of language models can be eased by adjusting data preprocess.

Predicting Kiosk Discontinuance (키오스크 이용 중단 의도에 영향을 미치는 요인)

  • Kim, Hyo-Jung
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.191-200
    • /
    • 2022
  • This study explores the discountinued use intention of kiosk, applying integration model with technology acceptance and theory of planned behavior. An online survey was conducted with 420 senior consumers aged 50-70. This research used SPSS 25.0 for descriptive, t-test, correlation, and regression analysis. Theses results are as follows. First, perceived usefulness, perceived control and satisfaction were higher among male group than female group. Second, perceived usefulness, affective inertia and behavior inertia were significantly influenced the discountined use intention of kiosk in male group. Third, perceived control, behavior inertia and cognitive inertia were significantly influenced the discountined use intention of kiosk in female group. These results enhance understanding of seniors' attitude and negative response to kiosk.

A study on the uncertainty analysis of LENS-GRM using formal and informal likelihood measure (정형·비정형 우도를 이용한 LENS-GRM 불확실성 해석)

  • Lee, Sang Hyup;Choo, Inn Kyo;Yu, Yeong Uk;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.317-317
    • /
    • 2020
  • 수재해는 수자원 인프라의 부족 및 관리 미흡 등 많은 요인들이 있지만 강우의 유무와 크기가 가장 원초적인 요인들 중 하나이다. 정확한 강우량 추정 및 강우발생시간 예측은 수재해로 인한 피해를 예방하고 빠르게 대처할 수 있다. 그러나 강우예측에는 많은 불확실성을 내포하고 있기 때문에 이러한 불확실성을 이해하고 줄여 나가는 것이 필요하다. 최근 컴퓨터의 성능의 발전에 비례해 강우 예측 자료들도 점진적으로 발전을 거듭하고 있다. 이를 강우-유출 모형에 적용시 유출량 예측의 정확성 또한 비례하여 한층 더 발전할 수 있을 것이다. 하지만 신뢰성이 낮은 입력자료를 대상으로 하는 유출해석 모형은 많은 불확실성을 내포할 것이다. 따라서 본 연구에서는 위천 유역에 대해 LENS(Limited area ENsemble prediction System) 강우앙상블 예측자료의 적용성을 검토하고 그리드 기반 강우 유출 모델 GRM(Grid based Rainfall-runoff Model) 에 적용하여 유출예측의 불확실성을 평가하고자 하였다. 또한 강우예측 및 유출예측은 수 많은 매개변수를 포함하며 최종적인 예측은 더 큰 불확실한 범위로 산출될 수 있다. 이에 따라 본 연구에서는 Python3 기반 코딩으로 LENS 자료 구축 및 GRM 모형의 매개변수 보정을 각 2000회 씩에 걸쳐 총 2회 실시하여 수문학적, 지형학적 인자에 따른 불확실성 범위를 보정하고자 하였다. 매개변수의 보정은 비정형우도(Informal likelihood) NSE, 정형우도(Formal likelihood) Lognormal(Log-likelihood function)의 우도에 따른 행위모델을 산정하여 보정하였다. 따라서 본 연구에서는 선행연구들을 참고한 정형, 비정형 우도의 임계치를 이용한 불확실성해석에 적용하였으며 이는 사용자의 행위모델선정 임계치 범위 선정으로 인한 불확실성을 줄여나감에 기여할 수 있을것으로 사료된다.

  • PDF

Exploration on Tokenization Method of Language Model for Korean Machine Reading Comprehension (한국어 기계 독해를 위한 언어 모델의 효과적 토큰화 방법 탐구)

  • Lee, Kangwook;Lee, Haejun;Kim, Jaewon;Yun, Huiwon;Ryu, Wonho
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.197-202
    • /
    • 2019
  • 토큰화는 입력 텍스트를 더 작은 단위의 텍스트로 분절하는 과정으로 주로 기계 학습 과정의 효율화를 위해 수행되는 전처리 작업이다. 현재까지 자연어 처리 분야 과업에 적용하기 위해 다양한 토큰화 방법이 제안되어 왔으나, 주로 텍스트를 효율적으로 분절하는데 초점을 맞춘 연구만이 이루어져 왔을 뿐, 한국어 데이터를 대상으로 최신 기계 학습 기법을 적용하고자 할 때 적합한 토큰화 방법이 무엇일지 탐구 해보기 위한 연구는 거의 이루어지지 않았다. 본 논문에서는 한국어 데이터를 대상으로 최신 기계 학습 기법인 전이 학습 기반의 자연어 처리 방법론을 적용하는데 있어 가장 적합한 토큰화 방법이 무엇인지 알아보기 위한 탐구 연구를 진행했다. 실험을 위해서는 대표적인 전이 학습 모형이면서 가장 좋은 성능을 보이고 있는 모형인 BERT를 이용했으며, 최종 성능 비교를 위해 토큰화 방법에 따라 성능이 크게 좌우되는 과업 중 하나인 기계 독해 과업을 채택했다. 비교 실험을 위한 토큰화 방법으로는 통상적으로 사용되는 음절, 어절, 형태소 단위뿐만 아니라 최근 각광을 받고 있는 토큰화 방식인 Byte Pair Encoding (BPE)를 채택했으며, 이와 더불어 새로운 토큰화 방법인 형태소 분절 단위 위에 BPE를 적용하는 혼합 토큰화 방법을 제안 한 뒤 성능 비교를 실시했다. 실험 결과, 어휘집 축소 효과 및 언어 모델의 퍼플렉시티 관점에서는 음절 단위 토큰화가 우수한 성능을 보였으나, 토큰 자체의 의미 내포 능력이 중요한 기계 독해 과업의 경우 형태소 단위의 토큰화가 우수한 성능을 보임을 확인할 수 있었다. 또한, BPE 토큰화가 종합적으로 우수한 성능을 보이는 가운데, 본 연구에서 새로이 제안한 형태소 분절과 BPE를 동시에 이용하는 혼합 토큰화 방법이 가장 우수한 성능을 보임을 확인할 수 있었다.

  • PDF

The Enhancement of intrusion detection reliability using Explainable Artificial Intelligence(XAI) (설명 가능한 인공지능(XAI)을 활용한 침입탐지 신뢰성 강화 방안)

  • Jung Il Ok;Choi Woo Bin;Kim Su Chul
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.101-110
    • /
    • 2022
  • As the cases of using artificial intelligence in various fields increase, attempts to solve various issues through artificial intelligence in the intrusion detection field are also increasing. However, the black box basis, which cannot explain or trace the reasons for the predicted results through machine learning, presents difficulties for security professionals who must use it. To solve this problem, research on explainable AI(XAI), which helps interpret and understand decisions in machine learning, is increasing in various fields. Therefore, in this paper, we propose an explanatory AI to enhance the reliability of machine learning-based intrusion detection prediction results. First, the intrusion detection model is implemented through XGBoost, and the description of the model is implemented using SHAP. And it provides reliability for security experts to make decisions by comparing and analyzing the existing feature importance and the results using SHAP. For this experiment, PKDD2007 dataset was used, and the association between existing feature importance and SHAP Value was analyzed, and it was verified that SHAP-based explainable AI was valid to give security experts the reliability of the prediction results of intrusion detection models.

Research on the Development Direction of Language Model-based Generative Artificial Intelligence through Patent Trend Analysis (특허 동향 분석을 통한 언어 모델 기반 생성형 인공지능 발전 방향 연구)

  • Daehee Kim;Jonghyun Lee;Beom-seok Kim;Jinhong Yang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.279-291
    • /
    • 2023
  • In recent years, language model-based generative AI technologies have made remarkable progress. In particular, it has attracted a lot of attention due to its increasing potential in various fields such as summarization and code writing. As a reflection of this interest, the number of patent applications related to generative AI has been increasing rapidly. In order to understand these trends and develop strategies accordingly, future forecasting is key. Predictions can be used to better understand the future trends in the field of technology and develop more effective strategies. In this paper, we analyzed patents filed to date to identify the direction of development of language model-based generative AI. In particular, we took an in-depth look at research and invention activities in each country, focusing on application trends by year and detailed technology. Through this analysis, we tried to understand the detailed technologies contained in the core patents and predict the future development trends of generative AI.

The Relationship between Exporters and the long-term orientation of Intermediaries in Korea: Using the SOR Model (수출업체와 한국 유통업체의 장기적 지향성 연구: SOR 모델을 중심으로)

  • Joon-Ho Shin
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.151-176
    • /
    • 2023
  • This paper critically examines the role performance of local distributors within the Stimulus-Organism-Response (SOR) model, while also considering the moderating influence of market competition on the organism (O) and response (R) elements. Adopting a holistic approach, the SOR model provides a comprehensive framework for analyzing how external stimuli, including distributive, procedural, and interaction unfairness, interact with internal psychological processes, such as perceived unfairness, to shape the long-term orientation of importing agents. Moreover, this study acknowledges the pivotal role of market competition in the operational context of local distributors. It posits that competitive market dynamics play a crucial role in intensifying the relationship between behavioral factors and the long-term orientation of distributors, thereby revealing contingent effects within the SOR model. Through the exploration of these dynamics, this study contributes to a comprehensive understanding of the interplay among external stimuli, internal psychological processes, and market competition within the SOR framework, advancing our knowledge in this field.

Prediction for Bicycle Demand using Spatial-Temporal Graph Models (시-공간 그래프 모델을 이용한 자전거 대여 예측)

  • Jangwoo Park
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.111-117
    • /
    • 2023
  • There is a lot of research on using a combination of graph neural networks and recurrent neural networks as a way to account for both temporal and spatial dependencies. In particular, graph neural networks are an emerging area of research. Seoul's bicycle rental service (aka Daereungi) has rental stations all over the city of Seoul, and the rental information at each station is a time series that is faithfully recorded. The rental information of each rental station has temporal characteristics that show periodicity over time, and regional characteristics are also thought to have important effects on the rental status. Regional correlations can be well understood using graph neural networks. In this study, we reconstructed the time series data of Seoul's bicycle rental service into a graph and developed a rental prediction model that combines a graph neural network and a recurrent neural network. We considered temporal characteristics such as periodicity over time, regional characteristics, and the degree importance of each rental station.

A Study on the Educational Methods of Convergence Major Based Learning (CMBL) for University Students (지역 연계 융합전공수행 기반 대학 교육 방안 연구)

  • Hyun-ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.49-56
    • /
    • 2023
  • The purpose of this study is to develop convergence major-based learning (CMBL), which selects performance tasks related to local problems at hand and solves them based on convergence major performance, and builds a suitable teaching and learning model. We developed a CMBL class with a team project-type class that finds and solves practical problems in the region to cultivate overall problem-solving capabilities for convergence major competencies. Additionally, for this class, the instructor played a role as a bridgehead to explore and connect the community's sites, and students visited connected institutions in person to identify problems they need based on understanding and empathy for the subjects through field observation and qualitative interviews, and developed a CMBL class teaching and learning model necessary to directly solve them by using their major capabilities to the fullest. Therefore, we intend to present the future-oriented direction of university convergence education required by the community by forming a group of students with various majors to cultivate the ability to solve realistic problems in the community.