As the number of videos uploaded on live streaming platforms rapidly increases, the demand for providing highlight videos is increasing to promote viewer experiences. In this paper, we present novel methods for predicting highlights using chat logs and audio data in videos. The proposed models employ bi-directional LSTMs to understand the contextual flow of a video. We also propose to use the features over various time-intervals to understand the mid-to-long term flows. The proposed Our methods are demonstrated on e-Sports and baseball videos collected from personal broadcasting platforms such as Twitch and Kakao TV. The results show that the information from multiple time-intervals is useful in predicting video highlights.
Kim, Dong-Hyun;Shim, Jae-Chan;Ryu, Ho-Yong;Lee, Yu-Tae
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.567-570
/
2014
The basic of a reliable service using a system and network is duplex configuration. There are a various duplex configuration for a system and network and we must have a performance indicator about how to use some redundancy. Then, we need analysis tool and method which analyze efficiently the performance about various duplex models. The tool that analyzing the performance and stability of the system and the network are a mathematical analysis method and simulation method. The mathematical analysis is a commonly used method, but high complexity system is not suitable for analysis methods and the simulation method has the problems which take a long time to understand in itself. Then, to overcome this problems, we propose the more simple method than used method for network analysis and we prove the efficiency by using the simple redundancy models.
Journal of The Korean Association For Science Education
/
v.39
no.2
/
pp.207-220
/
2019
Although the 2015 revised science curriculum has newly introduced core science competencies, there are a lot of confusions and difficulties at the school sites because the concept of competence is not clear. In this study, we conducted literature analysis to understand what constitutes the components of science competence and how the components are related. Based on this analysis, a model of science competency, composed of six factors (non-cognitive characteristics, knowledge, skill, context, performance, level) was suggested. In addition, we have explored ways to utilize this science competency model to re-write the achievement criteria of current science curriculum as science learning objectives expressed in the form of science competency. Finally, advantages and limits of the model are discussed and related further researches are suggested.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.4
/
pp.543-548
/
2021
The higher the resolution of the image, the higher the satisfaction of the viewers of the image, and the super-resolution imaging has a considerable increase in research value among the fields of computer vision and image processing. In this study, the main features of low-resolution image LR are extracted mainly using deep learning super-resolution models. It learns and reconstructs the extracted features, and focuses on reconstruction-based algorithms that generate high-resolution image HR. In this paper, we investigate SRCNN and VDSR in a super-resolution algorithm model based on reconstruction. The structure and algorithm process of the SRCNN and VDSR model are briefly introduced, and the multi-channel and special form are also examined in the improved performance evaluation function, and understand the performance of each algorithm through experiments. In the experiment, an experiment was performed to compare the results of the SRCNN and VDSR models with the peak signal-to-noise ratio and image structure similarity, so that the results can be easily judged.
IoT edge services utilizing neuromorphic hardware architectures are suitable for autonomous IoT applications as they perform intelligent processing on the device itself. However, spiking neural networks applied to neuromorphic hardware are difficult for IoT developers to comprehend due to their complex structures and various hyper-parameters. In this paper, we propose a method for generating spiking neural network (SNN) models that satisfy user performance requirements while considering the constraints of neuromorphic hardware. Our proposed method utilizes previously trained models from pre-processed data to find optimal SNN model parameters from profiling data. Comparing our method to a naive search method, both methods satisfy user requirements, but our proposed method shows better performance in terms of runtime. Additionally, even if the constraints of new hardware are not clearly known, the proposed method can provide high scalability by utilizing the profiled data of the hardware.
Quite a few elementary school teachers began to utilize AI technology in order to provide students with customized, intelligent information services in recent years. However, learning principles of AI may be as important as utilizing AI in everyday life because understanding principles of AI can empower them to buildup adaptability to changes in highly technological world. In the paper, 'Linear Regression Algorithm' is selected for teaching AI-based prediction system to solve real world problems suitable for elementary students. A simulation program written in Scratch was developed so that students can find a solution of linear regression model using the program. The paper shows that students have learned analyzing data as well as comparing the accuracy of the prediction model. Also, they have shown the ability to solve real world problems by finding suitable prediction models.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.5
/
pp.999-1008
/
2023
Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.
As music streaming services (MSS) involve various interactions with users during the music consumption process, it is important to understand the user experience and manage the service accordingly. This study developed a user experience model for MSS by theoretically linking the quality characteristics considered important by music service users with the structure of user experience. PLS analysis was then performed using survey data to test the model. As a result, functionality (search, browsing, and personalized recommendation), UI usability, content quality (currentness, sufficiency, relevance), and monetary cost were found to be key experience factors that determine the experience consequence, i.e., user satisfaction. In addition, in a supplementary analysis comparing domestic and global services, differences in user experience were found between the two groups in terms of functionality and content quality. The user experience model of MSS proposed in this study serves as a new foundation for theory-based research in this field and provides meaningful implications for the competitive landscape among music streaming service platforms and for their competitive strategies.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.17
no.6
/
pp.175-193
/
2022
Although there is paradigm shift in art industry and interdisciplinary convergence between art and entrepreneurship, little has been done in "art entrepreneurship." First, this study organized the concepts of art entrepreneurship and conducted literature reviews on the trends of international and domestic research. Second, this paper aimed to understand the concept of art platform business. To do so, authors reviewed the general concept of business model and special features of platform business. Third, this paper categorized and introduced 11 art platform businesses from the based on the purposes of companies (① rental & selling, ②commercialize & selling, ③crowdfunding, ④information sharing & digital exhibition). Forth, this study provided two frameworks (①business model components, ②platform controllability and customers' information asymmetry) and applied them into 11 cases. By systematically reviewing the previous studies, this paper expects to increase scholarly understanding of the field of art entrepreneurship where two different areas (art and entrepreneurship) have studied separately. In addition, introduction and analyses of 11 online art platform have practical implications.
Companies in modern society are increasingly recognizing sentiment classification as a crucial task, emphasizing the importance of accurately understanding consumer opinions opinions across various platforms such as social media, product reviews, and customer feedback for competitive success. Extensive research is being conducted on sentiment classification as it helps improve products or services by identifying the diverse opinions and emotions of consumers. In sentiment classification, fine-tuning with large-scale datasets and pre-trained language models is essential for enhancing performance. Recent advancements in artificial intelligence have led to high-performing sentiment classification models, with the ELECTRA model standing out due to its efficient learning methods and minimal computing resource requirements. Therefore, this paper proposes a method to enhance sentiment classification performance through efficient fine-tuning of various datasets using the KoELECTRA model, specifically trained for Korean.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.