Recent advances in text-to-speech (TTS) technology have significantly improved the quality of synthesized speech, reaching a level where it can closely imitate natural human speech. Especially, TTS models offering various voice characteristics and personalized speech, are widely utilized in fields such as artificial intelligence (AI) tutors, advertising, and video dubbing. Accordingly, in this paper, we propose a one-shot multi-speaker TTS system that can ensure acoustic diversity and synthesize personalized voice by generating speech using unseen target speakers' utterances. The proposed model integrates a speaker encoder into a TTS model consisting of the FastSpeech2 acoustic model and the HiFi-GAN vocoder. The speaker encoder, based on the pre-trained RawNet3, extracts speaker-specific voice features. Furthermore, the proposed approach not only includes an English one-shot multi-speaker TTS but also introduces a Korean one-shot multi-speaker TTS. We evaluate naturalness and speaker similarity of the generated speech using objective and subjective metrics. In the subjective evaluation, the proposed Korean one-shot multi-speaker TTS obtained naturalness mean opinion score (NMOS) of 3.36 and similarity MOS (SMOS) of 3.16. The objective evaluation of the proposed English and Korean one-shot multi-speaker TTS showed a prediction MOS (P-MOS) of 2.54 and 3.74, respectively. These results indicate that the performance of our proposed model is improved over the baseline models in terms of both naturalness and speaker similarity.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.636-638
/
2023
Covid19의 세계적 유행 이래로 긴 일정의 해외여행이 감소하고 국내 여행의 수요가 꾸준히 증가하는 추세이다. 현재 다수의 국내 여행 숙박 플랫폼은 가성비 측면으로 이용자가 숙박업소를 선택하고 소비자와 업체를 연결해주는 과정에서 수수료를 얻는 상업적 모델이다. 본 논문에서는 가격 경쟁 중심의 기성 시스템이 아닌, 여행자 개인의 가치를 맞춤화하고 공익의 목적으로 업체를 홍보하는 시스템을 제안한다. 이 시스템은 웹 기반의 시스템을 구현하여 여행자에게 개인 가치에 맞는 업소를 맞춤형으로 추천하고 해당 업소에 대한 평가 지표를 시각화하여 제공한다. 본 시스템은 맞춤형 업소 추천과 평가 지표 제공을 위해 소비자의 리뷰 데이터를 사용한다. 텍스트 데이터를 분석하고 해당 데이터를 다중 분류를 통해 업소에 대한 평가 지표별 점수를 산정한다. 본 시스템은 여행자에게 다양한 관광지와 관광 업소를 추천함으로써 지역 관광을 유도하고 해당 여행지 업소와 지역 경제에 도움을 줄 것이라고 기대된다. 본 논문에서 제안된 기법은 오픈소스로 공개되었다[1].
Ha, Eun-Ji;Kim, Hye-Young;Joo, Yong-Jin;Jun, Chul-Min
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2010.09a
/
pp.283-285
/
2010
도시 계획의 중요성이 부각되면서 다양한 도시 통합 모델의 개발이 이루어져왔으나 기존 모델들은 거시적 측면의 토지이용의 변화만 다루는 한계점이 있다. 본 논문은 토지이용 변화뿐만 아니라 다양한 사회 경제 지표를 반영하여 미시적인 분석이 가능한 UrbanSim 모델을 사용하여 사례연구를 통한 국내 도입 가능성과 시사점을 도출하고자 하였다. 이를 위해 수치지적도, 건축물 대장, 개별 공시지가 등 다양한 시공간 데이터를 이용하여 $150{\times}150m$ 그리드 셀 기반의 입력 데이터베이스를 구축하고 UrbanSim의 Land Price Model에 적용하였다. 향후 보다 현실적인 모델 수행을 위한 다중 스케일 및 Synthetic 데이터 구축 방안과 접근성 측면의 교통 통합 모델로 확장이 요구된다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.355-355
/
2022
기후변화에 의한 이상가뭄 발생 등을 대비하기 위한 비상용수 또는 대체수자원으로서의 지하수 개발수요가 증가하는 추세에 따라 기저유량 확보 및 수질 개선 방안을 수립하는 것은 지속가능한 수자원 이용·관리 측면에 있어서 매우 중요하다. 지하수 및 기저유량 확보 및 수질 개선을 위해서는 지표-지하수 통합 관리가 필요하며 이를 기반으로 지하수 및 기저유량 변동에 대한 인과관계 파악 및 구체적인 조사가 필요하다. 따라서 본 연구에서는 지표-지하수에 대한 계절적·시공간적 변동성을 잘 모의할 수 있는 통합 모델을 기반으로 지하수위 변동을 포함한 물수지 분석과 장·단기 유출해석이 정량적으로 분석하고자 하였으며, 평창군 대화면, 만대지구, 신둔천 유역을 대상으로 간벌, BMP, LID를 비롯한 다양한 시나리오에 따른 기저유량 및 수질변화 그리고 오염특성 파악을 수행하였다. 본 연구에서는 지표-지하수 통합 모델링을 위하여 SWAT-MODFLOW 모형을 활용하였으며, 간벌 시나리오의 경우 모형 Source code를 수정하여 간벌의 효과를 모의할 수 있도록 수정하였다. 또한 BMP와 LID의 경우 각 HRU별로 저감시설에 대한 효율 및 매개변수 조정을 통해 효율을 모의하였다. 모형의 입력자료 구축을 위하여 지표 모형의 경우 DEM, 토지이용도, 토양도를 활용하였으며, 지하수 모형의 경우 지하수기초조사자료에 수록된 수리전도도, 비산출율, 비보유율 조사결과를 활용하여 입력자료를 구축하였다. 그 결과 간벌시나리오의 경우 건기시 최소 6.7% 이상의 하천유량, 22.56% 이상의 기저유량, 그리고 0.3 m 이상의 지하수위 확보가 가능한 것으로 나타났다. BMP의 경우 유역면적의 약 7%에 BMP가 설치된 것으로 나타났으며, 이에 따른 하천 말단 SS저감효율은 6.7%로 나타났으나 유량에서는 큰 차이를 나타내지 못하였다. 마지막으로 LID시나리오의 경우 적용 소유역의 강우시 평균유량이 약 29% 감소하였으며 건기시 평균 기저유량이 약 44%이상, 평균 BFI는 약 0.13 증가한 것으로 나타났다.
Journal of the Korean Institute of Landscape Architecture
/
v.50
no.6
/
pp.42-57
/
2022
This study aims to create a basic model for classifying the activity photos that urban park users shared on social media using Deep Learning through Artificial Intelligence. Regarding the social media data, photos related to urban parks were collected through a Naver search, were collected, and used for the classification model. Based on the indicators of Naturalness, Potential Attraction, and Activity, which can be used to evaluate the characteristics of urban parks, 21 classification categories were created. Urban park photos shared on Naver were collected by category, and annotated datasets were created. A custom CNN model and a transfer learning model utilizing a CNN pre-trained on the collected photo datasets were designed and subsequently analyzed. As a result of the study, the Xception transfer learning model, which demonstrated the best performance, was selected as the urban park user activity image classification model and evaluated through several evaluation indicators. This study is meaningful in that it has built AI as an index that can evaluate the characteristics of urban parks by using user-shared photos on social media. The classification model using Deep Learning mitigates the limitations of manual classification, and it can efficiently classify large amounts of urban park photos. So, it can be said to be a useful method that can be used for the monitoring and management of city parks in the future.
This study aims to develop the trustworthiness model for public digital records, as an admissibility framework for establishing trust. The trustworthiness model is deemed to used to identify the qualities of the digital records in their lifecycle, including the identity that could be identified at the time of the creation, integrity obtained from the chain-of-custodial management, the evidence of relationship between business activities and records, and the technical or cognitive accessibility. Based on the analysis of the QADEP model, it was decided to develop a model that could measure the trustworthiness of public digital records in the external measurement type, which are authenticity, reliability, and usability. In line with this direction, the model expanded measurement areas and indicators of the QADEP model through the analysis of ISO 16175-1:2020, and measuring metrics was also proposed so that it could be a measuring instrument for public digital records in Korea, after analysing NAK 19-3. It would be useful to expand the model and to test the approach of the trustworthiness model for public digital records.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.217-217
/
2023
상수도관망은 사용자에게 고품질의 물을 안정적으로 공급하는 것을 목적으로 하며, 이를 평가하기 위한 지표 중 하나로 압력을 활용한다. 최근 스마트 센서의 설치가 확장됨에 따라 기계학습기법을 이용한 실시간 데이터 기반의 분석이 활발하다. 따라서 어디에서 데이터를 수집하느냐에 대한 센서 위치 결정이 중요하다. 본 연구는 eXtreme Gradient Boosting(XGBoost) 모델을 활용하여 대규모 상수도관망 내 센서 위치를 최적화하는 방법론을 제안한다. XGBoost 모델은 여러 의사결정 나무(decision tree)를 활용하는 앙상블(ensemble) 모델이며, 오차에 따른 가중치를 부여하여 성능을 향상시키는 부스팅(boosting) 방식을 이용한다. 이는 분산 및 병렬 처리가 가능해 메모리리소스를 최적으로 사용하고, 학습 속도가 빠르며 결측치에 대한 전처리 과정을 모델 내에 포함하고 있다는 장점이 있다. 모델 구현을 위한 독립 변수 결정을 위해 압력 데이터의 변동성 및 평균압력 값을 고려하여 상수도관망을 대표하는 중요 절점(critical node)를 선정한다. 중요 절점의 압력 값을 예측하는 XGBoost 모델을 구축하고 모델의 성능과 요인 중요도(feature importance) 값을 고려하여 센서의 최적 위치를 선정한다. 이러한 방법론을 기반으로 상수도관망의 특성에 따른 경향성을 파악하기 위해 다양한 형태(예를 들어, 망형, 가지형)와 구성 절점의 수를 변화시키며 결과를 분석한다. 본 연구에서 구축한 XGBoost 모델은 추가적인 전처리 과정을 최소화하며 대규모 관망에 간편하게 사용할 수 있어 추후 다양한 입출력 데이터의 조합을 통해 센서 위치 외에도 상수도관망에서의 성능 최적화에 활용할 수 있을 것으로 기대한다.
Purpose: This study proposes a fall detection model based on a top-down deep learning pose estimation model to automatically determine falls of multiple workers in an underground utility tunnel, and evaluates the performance of the proposed model. Method: A model is presented that combines fall discrimination rules with the results inferred from YOLOv8-pose, one of the top-down pose estimation models, and metrics of the model are evaluated for images of standing and falling two or fewer workers in the tunnel. The same process is also conducted for a bottom-up type of pose estimation model (OpenPose). In addition, due to dependency of the falling interference of the models on worker detection by YOLOv8-pose and OpenPose, metrics of the models for fall was not only investigated, but also for person. Result: For worker detection, both YOLOv8-pose and OpenPose models have F1-score of 0.88 and 0.71, respectively. However, for fall detection, the metrics were deteriorated to 0.71 and 0.23. The results of the OpenPose based model were due to partially detected worker body, and detected workers but fail to part them correctly. Conclusion: Use of top-down type of pose estimation models would be more effective way to detect fall of workers in the underground utility tunnel, with respect to joint recognition and partition between workers.
참굴에 다환성방향족탄화수소(PAHs)의 축적성과 이 물질들이 미치는 독성을 평가하기 위해 해양환경에서 빈번히 검출되는 PAHs 중의 하나인 fluoranthene을 사용한 모델연구를 수행하였다. Fluoranthene을 0.01-1ppm의 농도로 2주간 참굴에 노출시켰을 때 참굴 조직내의 fluoranthene의 농도는 노출기간 및 노출농도에 비례하여 최고 40-70배까지 증가하였다. 소화맹낭과 폐각근의 지질 과산화물가는 노출기간 및 노출농도에 관련하여 현저히 증가하였으며 수용성단백질의 함량은 노출기간이 길어짐에 따라 서서히 감소하였다. 그러나 glycogen 함량, nucleoside/nucleotide, DNA 및 RNA 함량은 변화하지 않았다. 이 결과로 fluoranthene은 굴의 조직내로 원활하게 축적함을 확인하였다. 또한 과산화지질의 함량은 fluoranthene에의 오염에 대해 신속히 반응하는 지표의 하나로 추정되며 수용성단백질의 감소도 비록 시간적으로 다소 둔감하기는 하나 또 다른 지표가 될 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.