The objective of a neural network design and model selection is to construct an optimal network with a good generalization performance. However, training data include noises, and the number of training data is not sufficient, which results in the difference between the true probability distribution and the empirical one. The difference makes the teaming parameters to over-fit only to training data and to deviate from the true distribution of data, which is called the overfitting phenomenon. The overfilled neural network shows good approximations for the training data, but gives bad predictions to untrained new data. As the complexity of the neural network increases, this overfitting phenomenon also becomes more severe. In this paper, by taking statistical viewpoint, we proposed an integrative process for neural network design and model selection method in order to improve generalization performance. At first, by using the natural gradient learning with adaptive regularization, we try to obtain optimal parameters that are not overfilled to training data with fast convergence. By adopting the natural pruning to the obtained optimal parameters, we generate several candidates of network model with different sizes. Finally, we select an optimal model among candidate models based on the Bayesian Information Criteria. Through the computer simulation on benchmark problems, we confirm the generalization and structure optimization performance of the proposed integrative process of teaming and model selection.
With a large feature space data, feature selection has become an extremely important procedure in the Data Mining process. But the traditional feature selection methods with single process may no longer fit for this procedure. In this paper, we proposed a hybrid efficient feature selection model for high dimensional data. We have applied our model on KNHNAES data set, the result shows that our model outperforms many existing methods in terms of accuracy over than at least 5%.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1269-1276
/
2023
Crop estimation is essential for the multinational meal and powerful demand due to its numerous aspects like soil, rain, climate, atmosphere, and their relations. The consequence of climate shift impacts the farming yield products. We operate the dataset with temperature, rainfall, humidity, etc. The current research focuses on feature selection with multifarious classifiers to assist farmers and agriculturalists. The crop yield estimation utilizing the feature selection approach is 96% accuracy. Feature selection affects a machine learning model's performance. Additionally, the performance of the current graph classifier accepts 81.5%. Eventually, the random forest regressor without feature selections owns 78% accuracy and the decision tree regressor without feature selections retains 67% accuracy. Our research merit is to reveal the experimental results of with and without feature selection significance for the proposed ten algorithms. These findings support learners and students in choosing the appropriate models for crop classification studies.
Proceedings of the Korean Society of Computer Information Conference
/
2014.01a
/
pp.347-348
/
2014
최근 급증하는 교통 혼잡으로 인해 시간적/물질적 손실이 크게 발생하고 있다. 이러한 교통난 해소는 시설투자만으로는 근본적인 해결책이 될 수 없다는 판단 하에 지난 수년간 보다 정확한 교통량을 예측하기 위해 시계열 기반의 다양한 교통량 예측 모델들이 개발 되어 왔다. 그러나 시계열 기반의 모델들은 회귀분석을 통해 과거 교통량을 분석하고 과거의 교통패턴이 미래에도 지속적으로 연장된다는 가정 하에 연구되었기 때문에 실시간으로 급변하는 불규칙한 교통 패턴에 대한 예측의 신뢰성을 떨어트린다. 또한 시계열 기반의 예측 기법은 어떠한 회귀분석 모델을 사용하는지에 따라 성능의 차이가 많이 나타나기 때문에 회귀분석 모델 선택이 중요하다. 이러한 제약을 극복하기 위해 본 논문에서는 은닉 마르코프 모델(Hidden Markov model)을 이용해 동적인 교통 패턴에 따라 현재 상황에 맞는 회귀분석 모델을 선택하는 신뢰도 높은 교통량 예측 시스템을 제안한다.
The purpose of this study was to survey the intervention model, intervention settings, intervention time, factors influencing selection of intervention model, relationship between intervention model and areas which supporting center for special education based occupational therapist was using. Study data were provided by 46 therapy supporting service professionals through e-mail and analyzed. The findings indicated that first, the therapy supporting service professionals often employed a direct therapy(individual) focusing on performance component of child. Second, they believed that direct therapy is most effective in improving children's performance and raising awareness of the importance of occupational therapy. Third, when choose intervention model, they took into consideration the child's performance components deficits and mind of team chief. Fourth, no correlation between the application time and the perception of effectiveness of intervention model. Also didn't find correlation between applying time of intervention model and intervention area. When putting the various research result together, the model school-based occupational therapists using was similar to medical model. Therefore it is need a study to develop effective intervention model and apply it in school environment.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.44
no.5
/
pp.55-61
/
2007
In this paper, we propose a three-dimensional(3D) active shape models for medical image segmentation. In order to build a 3D shape model, we need to generate a point distribution model(PDM) and select corresponding landmarks in all the training shapes. The manual determination method, two-dimensional(2D) method, and limited 3D method of landmark correspondences are time-consuming, tedious, and error-prone. In this paper, we generate a 3D statistical shape model using the 3D model generation method of a distance transform and a tetrahedron method for landmarking. After generating the 3D model, we extend the shape model training and gray-level model training of 2D active shape models(ASMs) and we use the integrated modeling process with scale and gray-level models for the appearance profile to represent the local structure. Experimental results are comparable to those of region-based, contour-based methods, and 2D ASMs.
Journal of the Korea institute for structural maintenance and inspection
/
v.9
no.2
/
pp.217-224
/
2005
A methodology of selecting an optimal model is proposed for applying a frequency-domain SI method effectively. Instead of using a reduced finite element model, a reasonably detail finite element model is established first and then the model is identified. To satisfy the identifiability criterion, a parameter grouping scheme is applied to control the number of unknowns. Among the simulated member grouping cases, an optimal model is selected as the one with the minimal statistical error. The proposed approach has been examined through simulation studies on a single span box-girder bridge.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.279-280
/
2021
패턴 또는 영상을 인식하기 위하여 먼저 기계 학습 모델을 선택하고, 선택된 모델은 여러 단계의 처리 단계 과정으로써, 학습 데이터 구성과 특징 추출 그리고 분류기 등으로 크게 나눌 수 있다. 기존의 학습 모델의 처리 단계 중 학습 데이터 구성은 첫 번째 중요한 단계이다. 본 논문에서는 학습 데이터들의 특징을 분석하여 데이터 분류성의 척도로 사용될 수 있는지를 검토하여 차후 기계 학습 및 딥 러닝의 인식을 높이고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.722-723
/
2023
연합학습은 중앙 서버에서 데이터를 수집하는 방식이 아닌 로컬 디바이스 또는 클라이언트에서 학습을 진행하고 중앙 서버로 모델 업데이트만 전송하는 분산 학습 기법으로 데이터 보안 및 개인정보보호를 강화하는 동시에 효율적인 분산 학습을 수행할 수 있다. 그러나, 연합학습 대부분의 시나리오는 클라이언트의 서로 다른 분포 형태인 non-IID 데이터를 대상으로 학습함에 따라 중앙집중식 모델에 비하여 낮은 성능을 보이게 된다. 이에 본 연구에서는 연합학습 모델의 성능을 개선하기 위하여 non-IID 의 환경에서 참여 후보자 중에서 적합한 클라이언트 선택의 최적화 기법을 분석한다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.4
/
pp.537-544
/
2020
Advances in detection techniques, such as mutation and obfuscation, are being advanced with the development of malware technology. In the malware detection technology, unknown malware detection technology is important, and a method for Malware Authorship Attribution that detects an unknown malicious code by identifying the author through distributed malware is being studied. In this paper, we try to extract the compiler information affecting the binary-based author identification method and to investigate the sensitivity of feature selection, probability and non-probability models, and optimization to classification efficiency between studies. In the experiment, the feature selection method through information gain and the support vector machine, which is a non-probability model, showed high efficiency. Among the optimization studies, high classification accuracy was obtained through feature selection and model optimization through the proposed framework, and resulted in 48% feature reduction and 53 faster execution speed. Through this study, we can confirm the sensitivity of feature selection, model, and optimization methods to classification efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.