이 연구의 목적은 학생들이 그린 그림이 야외지질답사와 모델링 기반 순환 학습에서 어떤 의미를 갖는지 질적으로 탐색하는 것이다. 서울의 한 대학 부설 영재교육원에 재학 중인 10명의 학생이 참여하였다. 한탄강 형성과정이라는 것을 주제로 야외지질답사와 3차시 모델링 3차시 수업을 진행하였다. 각 차시별 학생들이 작성했던 모든 기록장(글, 그림), 연구자 필드노트, 학생들이 참여한 모든 영상 자료 및 음성 녹음, 전사한 인터뷰 자료 등을 연구진과 공유하였다. Hatisaru (2020) 그림 표상화를 야외지질학습의 맥락에 맞게 수정하여 그림의 유형을 분류하였다. 학생들의 글(text, memo)을 포함한 그림의 특징을 분석하기 위해 연연적 내용 분석(deductive content analysis)을 사용하였다. 또한, 그림이 모델링 기반 순환 과정(자료 수집 관찰, 모델 생성, 모델 발달, 자연현상의 구체화) 속에서 어떤 역할을 하는지 분석하였다. 그 결과 학생들의 그림 유형은 지질학적인 개념을 포함한 상징적 이미지, 지형학적으로 외형을 묘사한 외형적 이미지, 학생들의 심리적인 영역을 표현한 정의적 이미지가 있었다. 특징은 설명, 생산화, 정교화, 증거, 일치, 심상(心狀)으로 분류하였다. 그림의 유형과 특징은 모델링 기반 순환 학습 과정에서 연속적으로 나타나며 학생들의 모델 발달 과정 속에서 학생들의 인지적인 영역에 관한 특성과 학업에 대한 긍정적인 태도와 감정을 반영하였다. 학생들이 그린 그림은 야외지질답사와 모델링 과정 모두에 있어서 학생들의 사고와 의사표현을 반영할 수 있는 도구로써 의미를 있음을 밝힘으로써 과학교육 관계자들에게 학생들의 그림 그리기 활동의 중요성을 역설하였다.
폭발적으로 성장하는 소셜 미디어 서비스로 인해 개인간의 연결이 강화된 환경에서는 URL로써 전파되는 피싱 공격의 위험성이 크게 강조된다. 최근 텍스트 분류 및 모델링 분야에서 그 성능을 입증받은 딥러닝 알고리즘은 피싱 URL의 구문적, 의미적 특징을 각각 모델링하기에 적절하지만, 기존에 사용하는 규칙 기반 앙상블 방법으로는 문자와 단어로부터 추출되는 특징간의 비선형적인 관계를 효과적으로 융합하는데 한계가 있다. 본 논문에서는 피싱 URL의 구문적, 의미적 특징을 체계적으로 융합하기 위한 컨볼루션 신경망 기반의 퓨전 신경망을 제안하고 기계학습 방법 중 최고의 분류정확도 (0.9804)를 달성하였다. 학습 및 테스트 데이터셋으로 45,000건의 정상 URL과 15,000건의 피싱 URL을 수집하였고, 정량적 검증으로 10겹 교차검증과 ROC커브, 정성적 검증으로 오분류 케이스와 딥러닝 내부 파라미터를 시각화하여 분석하였다.
수문순환과정의 시공간적 거동을 해석하고 이를 정량화 하는 것은 효율적인 수자원 관리 및 계획을 위해 반드시 선행되어야 하는 연구이다. 특히 토양수분은 물 에너지 순환에서 지표면과 대기 사이의 복잡한 관계를 이해하기 위한 중요한 수문인자로, 이를 정확하게 측정하기 위한 방법들이 다각도로 발전되어 왔다. 그 중 위성 데이터를 활용한 토양수분 산정은 미계측 지역의 토양수분을 지속적이고 광역적이게 관측할 수 있는 선진 기술로 각광받고 있다. 그러나 대부분의 위성 자료들이 가지고 있는 공간 해상도는 복잡한 지형 환경을 대상으로 한 지역의 원격 탐사로서는 국지적인 수문학적 현상들을 분석하는데 어려움을 가지고 있다. 특히 우리나라의 경우 국토의 70% 정도가 산지로 이루어져 있으며 경사도가 $5^{\circ}$ 이하의 평탄한 지역은 약 23%에 그치는 등 복잡한 식생 지형 환경을 가지고 있다. 따라서 인공위성의 해상도와 식생 투과도를 고려할 때 저 해상도의 위성 토양수분만으로는 우리나라와 같이 면적에 비해 복잡한 환경에 기반 한 수문학적 현상들을 충분히 분석하는데 한계점이 있다. 따라서 본 연구에서는 support vector machine (SVM) 기계학습을 활용하여 ASCAT과 AMSR2 위성 토양수분의 상세화를 수행하여 고해상도의 토양수분을 산정하였고, 이를 지점관측 자료와 비교해 상세화도 자료의 신뢰성을 평가하였다. 검증된 고해상도 토양수분 데이터는 향후 자연재해 분석에 있어 예측의 정확성을 높이고 수문순환 및 기후 모델링에 있어서 중요한 입력 인자로 활용될 것으로 기대된다.
인공신경망(Artificial Neural Network; ANN)은 뇌에 존재하는 생물학적 신경세포와 이들의 신호처리 과정을 수학적으로 묘사하여 뇌가 나타내는 지능적 형태의 반응을 구현한 것이다. 인공신경망은 학습(training)을 통해 입력과 출력으로 구성되는 하나의 시스템을 병렬적이고 비선형적으로 구축할 수 있으며, 유연한 모델링 특성으로 인하여 시스템 예측, 패턴인식, 분류 및 공정제어 등의 다양한 분야에서 활용되고 있다. 인공신경망에 대한 최초의 이론은 Muculloch and Pitts(1943)가 제안한 Perceptron에서 시작 되었으며, 기본적인 학습기법인 오차역전파 기법(back-propagation Algorithm) 이 1980년대에 들어 수학적으로 정립된 이후 여러 분야에서 활용되기 시작하였다). 본 연구에서는 하도추적, 구체적으로는 상류단의 복수의 수위관측을 이용하여 하류단의 수위를 예측하기 위하여 인공신경망 모델을 구성하였다. 대상하도는 금강유역의 용담댐과 대청댐 사이의 본류이며, 상류단 입력자료로써 본류에 있는 수통, 호탄 관측소 관측수위와 지류인 송천 관측소 관측수위를 고려하였다. 출력 값으로는 하류단의 옥천 관측소 수위를 3시간 및 6시간의 선행시간으로 예측하도록 인공신경망 모형을 구성하였다. 인공신경망의 학습(testing), 시험(testing), 검증(validation)을 위해 2000년부터 2012년까지 13년간의 시수위자료를 이용하여 학습을 진행하였으며, 2013년부터 2014년의 2년간의 수위자료를 이용한 시험을 통해 최적의 모형을 선정하였다. 또한 선정된 최적의 모형을 이용하여 2015년부터 2016년까지의 수위예측을 수행하였다.
최근 추천 시스템은 영화, 음악, 온라인 쇼핑 및 SNS 등 다양한 분야들에서 광범위하게 활용되고 있으며, 추천 시스템 분야에서 1세대 모델이라고 할수 있는 Apriori 모델을 통한 연관분석부터 최근 많은 주목을 받는 딥러닝 기반 모델들까지 많은 모델들이 제안되어왔다. 추천 시스템에서 기본 모델들은 협업 필터링(Collaborative filtering) 방법, 콘텐츠 기반 필터링(Content-based filtering) 방법, 그리고 이 두 방법을 통합적으로 사용하는 하이브리드 필터링(Hybrid filtering) 방법으로 분류될 수 있다. 하지만 이러한 모델들은 최근 점점 빠르게 변화하는 사용자-아이템 간의 상호관계와 빅데이터의 발전과 같은 내외 변화 요인들에 적응하지 못하면서 점점 분야 내 방법론으로써의 지위를 잃어가고 있다. 반면, 추천 시스템 내에서 딥러닝 기반 모델들은 비선형 변환, 표현학습, 순차적 모델링, 그리고 유연성과 같은 장점들 때문에 그 비중이 높아지고 있는 추세이다. 본 논문에서는 딥러닝 기반 추천 모델들 중에서도 사용자-아이템 간의 상호작용에 대해 보다 정확하고, 유연성 있게 분석이 가능한 순차적 모델링에 적합한 순환 신경망, 합성곱 신경망, 그리고 생성적 적대 신경망 중심 기반 모델로 분류하여 비교 및 분석한다.
순환식 펄라이트재배에서 배액 재사용을 위한 양분흡수 모델링을 작성하고자 EC 처리(1.5, 1.8, 2.1, 2.4, 2.7 dSㆍm-1)를 수행하였다. 생육 중기까지 EC 수준에 따른 양액흡수량은 차이가 없었지만 중기 이후 EC가 높을수록 흡수량이 감소되는 경항을 보였다(Fig. 1). NO$_3$-N, P 및 K의 흡수량은 생육기간 동안 처리간 차이를 유지하였는데 N과 K는 생육 중기 이후 일정 수준을 유지하였으나 P는 생육기간 동안 다소 증가되는 경향을 보였다. S의 흡수량은 생육 중기 이후 모든 처리에서 급격한 감소를 보였으며 생육 후기에는 처리간에 차이가 없었다(Fig. 2). 오이의 무기이온 흡수율에서와 같이 흡수량에서도 EC간 차이를 보여 EC를 무기이온 흡수량을 추정하는 요소로 이용할 수 있을 것으로 생각되었다. 무기이온 흡수량은 모든 EC 처리간에 생육 초기에는 차이를 보이지 않았으나 생육중기 이후에는 뚜렷한 차이를 보인 후 생육 후기의 높은 농도에서 그 차이가 다소 감소되는 경향을 보였다. 단위일사량에 따른 양액흡수량과 EC를 주된 변수로 한 오이의 이온 흡수량 예측 회귀식을 작성하였는데 모든 무기이온 흡수량 추정식의 상관계수는 S를 제외한 모든 이온에서 높게 나타났는데 특히 N, P, K 및 Ca에서 높았다. S이온에서의 상관계수는 0.47로 낮게 나타났으나 각 이온들의 회귀식에 대한 상관계수는 모두 1% 수준에서 유의성을 보여 위의 모델식을 순환식 양액재배에서 무기이온 추정식으로 사용이 가능할 것으로 생각되었다(Table 1). 이를 이용한 실측치와의 비교는 신뢰구간 1%내에서 높은 정의상관을 보여 실제적인 적용이 가능할 것으로 생각되었다(Fig 3)..ble 3D)를 바탕으로 MPEG-4 시스템의 특징들을 수용하여 구성되고 BIFS와 일대일로 대응된다. 반면에 XMT-0는 멀티미디어 문서를 웹문서로 표현하는 SMIL 2.0 을 그 기반으로 하였기에 MPEG-4 시스템의 특징보다는 컨텐츠를 저작하는 제작자의 초점에 맞추어 개발된 형태이다. XMT를 이용하여 컨텐츠를 저작하기 위해서는 사용자 인터페이스를 통해 입력되는 저작 정보들을 손쉽게 저장하고 조작할 수 있으며, 또한 XMT 파일 형태로 출력하기 위한 API 가 필요하다. 이에, 본 논문에서는 XMT 형태의 중간 자료형으로의 저장 및 조작을 위하여 XML 에서 표준 인터페이스로 사용하고 있는 DOM(Document Object Model)을 기반으로 하여 XMT 문법에 적합하게 API를 정의하였으며, 또한, XMT 파일을 생성하기 위한 API를 구현하였다. 본 논문에서 제공된 API는 객체기반 제작/편집 도구에 응용되어 다양한 멀티미디어 컨텐츠 제작에 사용되었다.x factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.0$\mu$M이 적당하며, 초기배발달을 유기할 때의 효과적인 cysteamine의 농도는 25~50$\mu$M인 것으로 판단된다.N)A(N)/N을 제시하였다(A(N)=N에 대한 A값). 위의 실험식을 사용하여 헝가리산 Zempleni 시료(15%
본 논문은 간호사의 역량을 규명하고, 전체 간호업무의 80%를 통제할 수 있는 20%의 핵심간호역량을 도출하여 이를 기반으로 하는 간호교육과정 개발을 위한 간호역량을 모델링하기 위해 시도되었다. 각종 역량 관련 문헌고찰을 통하여 역량기반 교육과정, 역량 및 간호역량의 개념을 확인하고, 간호역량의 개념에 부합하는 각종 간호역량을 열거 및 유목화 하여 이들 간의 관계를 규명하였다. 또한 각종 역량 모델링의 방법을 검토하여 이를 토대로 역량기반 간호교육과정에 고유한 핵심역량 모델의 예시적 개념 지도를 제시하였다. 역량기반 간호교육과정을 위한 핵심역량은 기저역량, 실무역량, 인성역량으로 대별되고 기저역량은 전공(이론+실기)과 간호술로 역량의 기본이 된다. 실무역량은 임상적 판단, 대상자 교육, 의사소통, 환자 안전, 질 향상, 병동 및 자원 관리 등으로 구성되며 인성역량은 리더십, 책임 인식, 협력, 정책변화 대응 등으로 이루어진다. 이들은 자기주도적 학습과 비판적 사고 능력을 통하여 지속적인 순환 관계를 유지한다. 결국 이러한 역량을 가진 간호사는 지식근로자로써 자기주도적 학습자이며 전문적이고 효율적인 의사소통가이다. 간호역량을 확정시키는 후속연구가 계속되어야 하며 실제 역량기반교육과정에 적용하여 성과를 측정하고 이를 다시 반영하는 과정이 지속적으로 이루어져야 함을 제언한다.
최근 수자원과 수질관리 분야에 자료기반 머신러닝 모델과 딥러닝 모델의 활용이 급증하고 있다. 그러나 딥러닝 모델은 Blackbox 모델의 특성상 고전적인 질량, 운동량, 에너지 보존법칙을 고려하지 않고, 데이터에 내재된 패턴과 관계를 해석하기 때문에 물리적 법칙을 만족하지 않는 예측결과를 가져올 수 있다. 또한, 딥러닝 모델의 예측 성능은 학습데이터의 양과 변수 선정에 크게 영향을 받는 모델이기 때문에 양질의 데이터가 제공되지 않으면 모델의 bias와 variation이 클 수 있으며 정확도 높은 예측이 어렵다. 최근 이러한 자료기반 모델링 방법의 단점을 보완하기 위해 프로세스 기반 수치모델과 딥러닝 모델을 결합하여 두 모델링 방법의 장점을 활용하는 연구가 활발히 진행되고 있다(Read et al., 2019). Process-Guided Deep Learning (PGDL) 방법은 물리적 법칙을 반영하여 딥러닝 모델을 훈련시킴으로써 순수한 딥러닝 모델의 물리적 법칙 결여성 문제를 해결할 수 있는 대안으로 활용되고 있다. PGDL 모델은 딥러닝 모델에 물리적인 법칙을 해석할 수 있는 추가변수를 도입하며, 딥러닝 모델의 매개변수 최적화 과정에서 Cost 함수에 물리적 법칙을 위반하는 경우 Penalty를 추가하는 알고리즘을 도입하여 물리적 보존법칙을 만족하도록 모델을 훈련시킨다. 본 연구의 목적은 대청호의 수심별 수온을 예측하기 위해 역학적 모델과 딥러닝 모델을 융합한 PGDL 모델을 개발하고 적용성을 평가하는데 있다. 역학적 모델은 2차원 횡방향 평균 수리·수질 모델인 CE-QUAL-W2을 사용하였으며, 대청호를 대상으로 2017년부터 2018년까지 총 2년간 수온과 에너지 수지를 모의하였다. 기상(기온, 이슬점온도, 풍향, 풍속, 운량), 수문(저수위, 유입·유출 유량), 수온자료를 수집하여 CE-QUAL-W2 모델을 구축하고 보정하였으며, 모델은 저수위 변화, 수온의 수심별 시계열 변동 특성을 적절하게 재현하였다. 또한, 동일기간 대청호 수심별 수온 예측을 위한 순환 신경망 모델인 LSTM(Long Short-Term Memory)을 개발하였으며, 종속변수는 수온계 체인을 통해 수집한 수심별 고빈도 수온 자료를 사용하고 독립 변수는 기온, 풍속, 상대습도, 강수량, 단파복사에너지, 장파복사에너지를 사용하였다. LSTM 모델의 매개변수 최적화는 지도학습을 통해 예측값과 실측값의 RMSE가 최소화 되로록 훈련하였다. PGDL 모델은 동일 기간 LSTM 모델과 동일 입력 자료를 사용하여 구축하였으며, 역학적 모델에서 얻은 에너지 수지를 만족하지 않는 경우 Cost Function에 Penalty를 추가하여 물리적 보존법칙을 만족하도록 훈련하고 수심별 수온 예측결과를 비교·분석하였다.
산림생태계에서 총일차생산성(Gross Primary Production, GPP)은 기후변화에 따른 산림의 생산성과 그에 영향을 미치는 식물계절, 건강성, 탄소 순환 등을 대표하는 지표이다. 총일차생산성을 추정하기 위해서는 에디공분산 타워 자료나 위성영상관측자료를 이용하기도 하고 물리지형적 한계나 기후변화 등을 고려하기 위해 기작기반모델링을 활용하기도 한다. 그러나 총일차생산성을 포함한 산림 탄소 순환의 기작기반 모델링은 식물의 생물, 생리, 화학적 기작들의 반응과 지형, 기후 및 시간 등과 같은 환경 조건들이 복잡하게 얽혀 있어 비선형적이고 유연성이 떨어져 반응에 영향을 주는 조건들을 모두 적용하기가 어렵다. 본 연구에서는 산림 생산성 추정 모델을 에디공분산 자료와 인공위성영상 정보를 사용하여 기계학습 알고리즘을 사용한 모델들로 구축해 보고 그 사용 및 확장 가능성을 검토해 보고자 하였다. 설명변수들로는 에디공분산자료와 인공위성자료에서 나온 대기기상인자들을 사용하였고 검증자료로 에디공분산 타워에서 관측된 총일차생산성을 사용하였다. 산림생산성 추정 모델은 1) 에디공분산 관측 기온($T_{air}$), 태양복사($R_d$), 상대습도(RH), 강수(PPT), 증발산(ET) 자료, 2) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD 자료(개량식생지수 제외), 3) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD, 개량식생지수(EVI) 자료를 사용하는 세 가지 경우로 나누어 구축하여 2006 - 2013년 자료로 훈련시키고 2014, 2015년 자료로 검증하였다. 기계학습 알고리즘은 support vector machine (SVM), random forest (RF), artificial neural network (ANN)를 사용하였고 단순 비교를 위해 고전적 방법인 multiple linear regression model (LM)을 사용하였다. 그 결과, 에디공분산 입력자료로 훈련시킨 모델의 예측력은 피어슨 상관계수 0.89 - 0.92 (MSE = 1.24 - 1.62), MODIS 입력자료로 훈련시킨 모델의 예측력은 개량식생지수 제외된 모델은 0.82 - 0.86 (MSE = 1.99 - 2.45), 개량식생지수가 포함된 모델은 0.92 - 0.93(MSE = 1.00 - 1.24)을 보였다. 이러한 결과는 산림총일차생산성 추정 모델 구축에 있어 MODIS인공위성 영상 정보 기반으로 기계학습 알고리즘을 사용하는 것에 대한 높은 활용가능성을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.