DOI QR코드

DOI QR Code

Understanding Purposes and Functions of Students' Drawing while on Geological Field Trips and during Modeling-Based Learning Cycle

야외지질답사 및 모델링 기반 순환 학습에서 학생들이 그린 그림의 목적과 기능에 대한 이해

  • Choi, Yoon-Sung (Department of Earth Science Education, Seoul National University)
  • 최윤성 (서울대학교 지구과학교육과)
  • Received : 2020.12.21
  • Accepted : 2021.01.20
  • Published : 2021.02.28

Abstract

The purpose of this study was to qualitatively examine the meaning of students' drawings in outdoor classes and modeling-based learning cycles. Ten students were observed in a gifted education center in Seoul. Under the theme of the Hantan River, three outdoor classes and three modeling activities were conducted. Data were collected to document all student activities during field trips and classroom modeling activities using simultaneous video and audio recording and observation notes made by the researcher and students. Please note it is unclear what this citation refers to. If it is the previous sentence it should be placed within that sentence's punctuation. Hatisaru (2020) Ddrawing typess were classified by modifying the representations in a learning context in geological field trips. We used deductive content analysis to describe the drawing characteristics, including students writing. The results suggest that students have symbolic images that consist of geologic concepts, visual images that describe topographical features, and affective images that express students' emotion domains. The characteristics were classified into explanation, generality, elaboration, evidence, coherence, and state-of-mind. The characteristics and drawing types are consecutive in the modeling-based learning cycle and reflect the students' positive attitude and cognitive scientific domain. Drawing is a useful tool for reflecting students' thoughts and opinions in both outdoor class and classroom modeling activities. This study provides implications for emphasizing the importance of drawing activities.

이 연구의 목적은 학생들이 그린 그림이 야외지질답사와 모델링 기반 순환 학습에서 어떤 의미를 갖는지 질적으로 탐색하는 것이다. 서울의 한 대학 부설 영재교육원에 재학 중인 10명의 학생이 참여하였다. 한탄강 형성과정이라는 것을 주제로 야외지질답사와 3차시 모델링 3차시 수업을 진행하였다. 각 차시별 학생들이 작성했던 모든 기록장(글, 그림), 연구자 필드노트, 학생들이 참여한 모든 영상 자료 및 음성 녹음, 전사한 인터뷰 자료 등을 연구진과 공유하였다. Hatisaru (2020) 그림 표상화를 야외지질학습의 맥락에 맞게 수정하여 그림의 유형을 분류하였다. 학생들의 글(text, memo)을 포함한 그림의 특징을 분석하기 위해 연연적 내용 분석(deductive content analysis)을 사용하였다. 또한, 그림이 모델링 기반 순환 과정(자료 수집 관찰, 모델 생성, 모델 발달, 자연현상의 구체화) 속에서 어떤 역할을 하는지 분석하였다. 그 결과 학생들의 그림 유형은 지질학적인 개념을 포함한 상징적 이미지, 지형학적으로 외형을 묘사한 외형적 이미지, 학생들의 심리적인 영역을 표현한 정의적 이미지가 있었다. 특징은 설명, 생산화, 정교화, 증거, 일치, 심상(心狀)으로 분류하였다. 그림의 유형과 특징은 모델링 기반 순환 학습 과정에서 연속적으로 나타나며 학생들의 모델 발달 과정 속에서 학생들의 인지적인 영역에 관한 특성과 학업에 대한 긍정적인 태도와 감정을 반영하였다. 학생들이 그린 그림은 야외지질답사와 모델링 과정 모두에 있어서 학생들의 사고와 의사표현을 반영할 수 있는 도구로써 의미를 있음을 밝힘으로써 과학교육 관계자들에게 학생들의 그림 그리기 활동의 중요성을 역설하였다.

Keywords

Acknowledgement

이 연구는 저자의 박사학위 논문 자료 중 일부를 발췌하여 재구성하였습니다.

References

  1. Ainsworth, S., Prain, V., and Tytler, R. 2011, Drawing to learn in science. Science, 333(6046), 1096-1097. https://doi.org/10.1126/science.1204153
  2. Brooks, M. 2009, Drawing, visualisation and young children's exploration of "big ideas". International Journal of Science Education, 31(3), 319-341. https://doi.org/10.1080/09500690802595771
  3. Carless, D., and Lam, R. 2014, The examined life: perspectives of lower primary school students in Hong Kong. Education 3-13, 42(3), 313-329. https://doi.org/10.1080/03004279.2012.689988
  4. Choi, Y., Kim, C., and Choe, S. 2018, Development and application of learning on geological field trip utilizing on social construcion of scientific model. The Journal of the Korean Earth Science Society, 39(2), 178-192. https://doi.org/10.5467/JKESS.2018.39.2.178
  5. Choi, Y., and Kim, C. 2020, Applying of learning in geological field trip utilizing scientific models and modeling using national geo-park the Hantan-River. School Science Journal, 14(2), 175-192. https://doi.org/10.15737/SSJ.14.2.202005.175
  6. Constantinou, C., Nicolaou, C., and Papaevripidou, M. 2019, A framework for modeling-based learning, teaching, and assessment. In Towards a Competence-Based View on Models and Modeling in Science Education (pp. 39-58). Springer, Cham.
  7. DeBoer, G. 2000, Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(6), 582-601. https://doi.org/10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L
  8. Elo, S., and Kyngas, 2008, The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107-115. https://doi.org/10.1111/j.1365-2648.2007.04569.x
  9. Genge, M. 2020, Geological Field Sketches and Illustrations: A Practical Guide. Oxford University Press, USA.
  10. Hatisaru, V. 2020, Exploring evidence of mathematical tasks and representations in the drawings of middle school students. International Electronic Journal of Mathematics Education, 15(3), em0609. https://doi.org/10.29333/iejme/8482
  11. Heijnes, D., Van Joolingen, W., and Leenaars, F. 2018, Stimulating scientific reasoning with drawing-based modeling. Journal of Science Education and Technology, 27(1), 45-56. https://doi.org/10.1007/s10956-017-9707-z
  12. Ki W., Lim, S., Kim, H., Hwang, S., Kim.B., Song, G., and Kim, Y. 2008, Yeoncheon Scale up the Report on the Explosive Geological Survey 1:50,000. Korea Institute of Geological Resources. p83.
  13. Kyngas, H., Mikkonen, K., and Kaariainen, M. (Eds.). 2020, The application of content analysis in nursing science research. Springer Nature.
  14. Kyngas, H., Mikkonen, K., and Maria Kaariainen 2020, Content Analysis in Mixed Methods Research. In The Application of Content Analysis in Nursing Science Research (pp. 31-40). Springer, Cham.
  15. Laugksch, R. 2000, Scientific literacy: A conceptual overview. Science Education, 84(1), 71-94. https://doi.org/10.1002/(SICI)1098-237X(200001)84:1<71::AID-SCE6>3.0.CO;2-C
  16. Leenaars, F., Van Joolingen, W., and Bollen, L. 2013, Using self?made drawings to support modelling in science education. British Journal of Educational Technology, 44(1), 82-94. https://doi.org/10.1111/j.1467-8535.2011.01272.x
  17. Louca, L., and Zacharia, Z. 2012, Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471-492. https://doi.org/10.1080/00131911.2011.628748
  18. Ministry of Education. 2015, 2015 revised curriculum Science. Seoul: Ministry of Education.
  19. Nersessian, N., 1999, Model-based reasoning in conceptual change. In Model-based reasoning in scientific discovery (pp. 5-22). Springer, Boston, MA.
  20. Orion, N., 1993, A model for the development and implementation of field trips as an intergral part of the science curriculum. School Science and Mathematics, 93(6), 325-331. https://doi.org/10.1111/j.1949-8594.1993.tb12254.x
  21. Park, J., Chang, J., Tang, K., Treagust, D., & Won, M. 2020, Sequential patterns of students' drawing in constructing scientific explanations: focusing on the interplay among three levels of pictorial representation. International Journal of Science Education, 1-26.
  22. Penner, D. 2001, Cognition, computers, and synthetic science: building knowledge and meaning through modeling. Review of Research in Education, 25(1), 1-35. https://doi.org/10.3102/0091732X025001001
  23. Preston, C. 2016, Try this: Draw like a scientist. Teaching Science, 62(4), 4.
  24. Schwarz, C., Reiser, B., Davis, E., Kenyon, L., Acher, A., Fortus, D., and Krajcik, J. 2009, Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  25. Treagust, D., and Tsui, C. (Eds.). 2013, Multiple representations in biological education. Springer Science & Business Media.
  26. Van Borkulo, S., Van Joolingen, W, Savelsbergh, E, and deJong, T. 2009, A framework for the assessment of learning by modeling. In Model-Based Approaches to Learning (pp. 179-195). Brill Sense.
  27. VanLehn, K., Wetzel, J., Grover, S., and Van De Sande, B. 2016, Learning how to construct models of dynamic systems: an initial evaluation of the dragoon intelligent tutoring system. IEEE Transactions on Learning Technologies, 10(2), 154-167. https://doi.org/10.1109/TLT.2016.2514422
  28. Van Joolingen, W., Bollen, L., and Leenaars, F. 2010, Using drawings in knowledge modeling and simulation for science teaching. In Advances in intelligent tutoring systems (pp. 249-264). Springer, Berlin, Heidelberg.
  29. Van Joolingen, W., Bollen, L., Leenaars, F., and Gijlers, H. 2012, Drawing-based modeling for early science education. In International Conference on Intelligent Tutoring Systems (pp. 689-690). Springer, Berlin, Heidelberg.
  30. Van Joolingen, W., Aukes, A., Gijlers, H., and Bollen, L. 2015, Understanding elementary astronomy by making drawing-based models. Journal of Science Education and Technology, 24(2-3), 256-264. https://doi.org/10.1007/s10956-014-9540-6
  31. Van Joolingen, W., Schouten, J., and Leenaars, F. 2019, Drawing-based modeling in teaching elementary biology as a diagnostic tool. In Towards a Competence-Based View on Models and Modeling in Science Education (pp. 131-145). Springer, Cham.
  32. Van Meter, P. 2001, Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 93(1), 129. https://doi.org/10.1037/0022-0663.93.1.129
  33. Wilkerson-Jerde, M., Gravel, B., and Macrander, C. 2015, Exploring shifts in middle school learners' modeling activity while generating drawings, animations, and computational simulations of molecular diffusion. Journal of Science Education and Technology, 24(2-3), 396-415. https://doi.org/10.1007/s10956-014-9497-5
  34. Windschitl, M., Thompson, J., and Braaten, M. 2008, Beyond the scientific method: Model?based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259