• Title/Summary/Keyword: 모달 특성

Search Result 203, Processing Time 0.039 seconds

G/T 250톤 카페리선 축계의 동특성에 관한 고찰

  • Gang, Byeong-Mo;Go, Jae-Yong;Seo, Gwang-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.82-84
    • /
    • 2015
  • 유한요소법을 이용하여 카페리선 제작 시 축계의 제작 및 강도의 문제를 Campbell Diagram 및 Modal 해석을 통한 동특성 분석을 하였다. 이를 통하여 양방향 차도선의 추진 방향 및 후진 방향 축계 작동 시 공진 현상 및 위험속도를 분석 결과 안정성을 보인 것으로 판단된다.

  • PDF

Bimodal evolution of tunnel seepage water in the Yangyang power plant construction site: Preliminary result (양양 양수발전소 터널 용출수의 바이모달 진화 특성: 예비 결과)

  • 유인식;윤성태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.218-221
    • /
    • 2001
  • 양양 양수발전소 건설 지역 터널 내에서 동일 암상 내에 부존하는 단열 암반 대수층 지하수를 수평/수직적 관점에서 체계적으로 채취하고 수리지구화학 및 환경동위원소 특성 연구를 수행하고 있다. 현재까지 모아진 특성 자료를 공간적 변화와 관련하여 예비 고찰한 곁과, 연구 지역에는 두 가지 상이한 지하수 유통계를 이루고 있는 것으로 판단된다.

  • PDF

Optimal Sensor Allocation for Health Monitoring of Roller-Coaster Structure (롤러코스터의 모니터링을 위한 최적 센서 구성)

  • Heo, Gwang Hee;Jeon, Seung Gon;Park, In Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.165-174
    • /
    • 2011
  • This research aims at the optimal constitution of sensors required to identify the structural shortcoming of roller-coaster. In this research we analyzed the dynamic characteristics of roller-coaster by three dimensional FE modelling, decided on the appropriate location and number of sensors through optimal transducer theory, abstracted the mathematical value of modal features before and after damage on the basis of optimally placed and numbered sensors. and then presented it as a primary information about the basic structure which would be applied to damage estimation. As a target structure, the roller-coater at Seoul Children's Grand Park was chosen and built as a model reduced by one twentieth in size. In order to consider the Kinetics features particular to the roller-coaster structure, we made an exact three-dimensional FE modelling for the model structure by means of Spline function. As for the proper location and number of sensors, it was done by applying EIM and EOT. We also estimated the damage from the combination of strength, flexibility, and model corelation after abstracting the value of modal features. Finally the optimal transducer theory presented here in this research was proved to be valid, and the structural damage was well identified through changes in strength and flexibility. As a result, we were able to present the optimal constitution of sensors needed for the analysis of dynamic characteristics and the development of techniques in dynamic characteristics, which would ultimately contribute to the development of health monitoring for roller-coaster.

Natural Frequency Analysis of Sleeper Floating Track System using Modal Test Technique (모달시험기법을 이용한 침목플로팅궤도의 고유진동수 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.833-838
    • /
    • 2024
  • The urban railway sleeper floating track(STEDEF) is a structure that structurally separates the sleepers and the concrete bed using sleeper boots and resilience pads to reduce vibration transmitted to the concrete bed. Recently, the resilience pads of sleeper floating tracks that have been in use for more than 20 years are deteriorating. Accordingly, in order to evaluate the performance of the resilience pad, a static spring stiffness test is being performed after extracting the resilience pad. This evaluation technique is performed after replacing the resilience pad in use. However, the track natural frequency can change depending on the resilience pad spring stiffness and the uplift and subsidence of the concrete bed. In this study, modal testing technique was used to evaluate the track natural frequency. For this purpose, the sleeper boots material, resilience pad spring stiffness, and track natural frequency according to concrete bed uplift and subsidence were measured using modal tests at a laboratory scale. It was analyzed that the natural frequency of the sleeper floating track was directly affected by changes in the spring stiffness of the resilience pad. In addition, the change in natural frequency due to the uplift and subsidence of the concrete bed was also found to be large. Therefore, it is believed that the modal test technique presented in this study can be used to evaluate the resilience pad deterioration and voided sleepers.

상시 진동을 이용한 부유식 구조물의 동적 특성 추출

  • Kim, Han-Sam;Park, Su-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.253-255
    • /
    • 2013
  • 수요가 늘어가고 있는 부유식 해양플랜트 구조물의 열악한 해양환경에서의 구조물의 노후화, 사고발생 가능성에 대비해 지속적인 평가가 필요하나, 기존의 구조물에 사용되는 안전성 평가 기법으로는 한계가 있어, 상시적인 구조물의 건전성 평가기법이 필요하다. 그래서 본 연구에서는 상시적인 구조물의 건전성 평가기법을 위해 부유식 구조물의 상시적인 응답 가속도를 추출하여 해당 구조물의 동적특성을 추출 하였다.

  • PDF

A Study on the Prediction of the Mechanical Properties of Printed Circuit Boards Using Modal Parameters (모달 파라미터 정보를 활용한 PCB 물성 예측에 관한 연구)

  • Choo, Jeong Hwan;Jung, Hyun Bum;Hong, Sang Ryel;Kim, Yong Kap;Kim, Jae San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.421-426
    • /
    • 2017
  • In this study, we propose a method for predicting the mechanical properties of the printed circuit board (PCB) that has transversely isotropic characteristics. Unlike the isotropic material, there is no specific test standard for acquisition of the transversely isotropic properties. In addition, common material test methods are not readily applicable to that type of laminated thin plate. Utilizing the natural frequency obtained by a modal test and the sizing optimization technique provided in $OptiStruct^{(R)}$, the mechanical properties of a PCB were derived to minimize the difference between test and analysis results. In addition, the validity of the predicted mechanical properties was confirmed by the MAC (Modal Assurance Criteria) value of each of the compared mode shapes. This proposed approach is expected to be extended to the structural analysis for the design verification of the top product that includes a PCB.

A Virtual Reality System for the Cognitive and Behavioral Assessment of Schizophrenia (정신분열병 환자의 인지적/행동적 특성평가를 위한 가상현실시스템 구현)

  • Lee, Jang-Han;Cho, Won-Geun;Kim, Ho-Sung;Ku, Jung-Hun;Kim, Jae-Hun;Kim, Byoung-Nyun;Kim, Sun-I.
    • Science of Emotion and Sensibility
    • /
    • v.6 no.3
    • /
    • pp.55-62
    • /
    • 2003
  • Patients with schizophrenia have thinking disorders such as delusion or hallucination, because they have a deficit in the ability which to systematize and integrate information. therefore, they cannot integrate or systematize visual, auditory and tactile stimuli. In this study, we suggest a virtual reality system for the assessment of cognitive ability of schizophrenia patients, based on the brain multimodal integration model. The virtual reality system provides multimodal stimuli, such as visual and auditory stimuli, to the patient, and can evaluate the patient's multimodal integration and working memory integration abilities by making the patient interpret and react to multimodal stimuli, which must be remembered for a given period of time. the clinical study showed that the virtual reality program developed is comparable to those of the WCST and the SPM.

  • PDF

Driver Drowsiness Detection Model using Image and PPG data Based on Multimodal Deep Learning (이미지와 PPG 데이터를 사용한 멀티모달 딥 러닝 기반의 운전자 졸음 감지 모델)

  • Choi, Hyung-Tak;Back, Moon-Ki;Kang, Jae-Sik;Yoon, Seung-Won;Lee, Kyu-Chul
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.45-57
    • /
    • 2018
  • The drowsiness that occurs in the driving is a very dangerous driver condition that can be directly linked to a major accident. In order to prevent drowsiness, there are traditional drowsiness detection methods to grasp the driver's condition, but there is a limit to the generalized driver's condition recognition that reflects the individual characteristics of drivers. In recent years, deep learning based state recognition studies have been proposed to recognize drivers' condition. Deep learning has the advantage of extracting features from a non-human machine and deriving a more generalized recognition model. In this study, we propose a more accurate state recognition model than the existing deep learning method by learning image and PPG at the same time to grasp driver's condition. This paper confirms the effect of driver's image and PPG data on drowsiness detection and experiment to see if it improves the performance of learning model when used together. We confirmed the accuracy improvement of around 3% when using image and PPG together than using image alone. In addition, the multimodal deep learning based model that classifies the driver's condition into three categories showed a classification accuracy of 96%.