• Title/Summary/Keyword: 모노리식 마이크로파 집적회로

Search Result 5, Processing Time 0.018 seconds

A Highly Integrated HBT Downconverter MMIC for Application to One-chip RF tranceiver solution (One-chip 고주파 단말기에의 응용을 위한 고집적 HBT 다운컨버터 MMIC)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.777-783
    • /
    • 2007
  • In this work, a highly integrated downconverter MMIC employing HBT(heterojunction bipolar transistor) was developed for application to one chip tranceiver solution of Ku-band commercial wireless communication system. The downconverter MMIC (monolithic microwave integrated circuit) includes mixer filter. amplifier and input/output matching circuit. Especially, spiral inductor structures employing SiN film were used for a suppression of LO and its second harmonic leakage signals. Concretely, they were properly designed so that the self-resonance frequency was accurately tuned to LO and its second harmonic frequency, and they were integrated on the downconverter MMIC.

An ultra-compact Wilkinson power divider MMIC with an improved isolation characteristic employing RCR design method (RCR 삽입법에 의해 설계된 높은 절연특성을 가지는 초소형 MMIC용 윌킨슨 전력분배기)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.105-113
    • /
    • 2013
  • In this work, using a ${\pi}$-type multiple coupled microstrip line structure (MCMLS) and RCR (Resistor Capacitor Resistor) structure, we fabricated ultra-compact and high isolation Wilkinson power divider on GaAs MMIC (Monolithic Microwave Integrated Circuit). The line length of the Wilkinson power divider was reduced to about ${\lambda}$/46, and its size was 0.304 [$mm^2$], which is 12.1 % of conventional one. Compared with conventional Wilkinson power divider, isolation characteristic of the proposed Wilkinson power divider was highly improved by using RCR insertion method. The proposed Wilkinson power divider showed good RF performances in C/X band.

Development of A X-band 12 W High Power Amplifier MMIC (X-대역 12-W 급 고출력증폭기 MMIC 개발)

  • Chang, Dong-Pil;Noh, Youn-Sub;Lee, Jeong-Won;Ahn, Ki-Burm;Uhm, Man-Seok;Yom, In-Bok;Na, Hyung-Ki;Ahn, Chang-Soo;Kim, Sun-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.446-451
    • /
    • 2009
  • In this paper, we described the design and test results of a high output power amplifier MMIC developed by using 0.5um power pHEMT processes on a 6-inch GaAs wafer for the X-band T/R module application. In the MMIC design, we have used a simple on-chip gate active bias technology to compensate the threshold-voltage variation of pHEMT during the fabrication process and 16-to-1 power combining method to achieve the output power over 10watt. The fabricated chip has an output power over 12watts and maximum PAE of 32% over the frequency range of fo +/-750MHz.

A Study on Characteristics of the Transmission Line Employing Periodically Perforated Ground Metal on GaAs MMIC and Its Application to Highly Miniaturized On-chip Impedance Transformer Employing Coplanar Waveguide (GaAs MMIC상에서 주기적으로 천공된 홀을 가지는 접지 금속막 구조를 이용한 전송선로 특성연구 및 코프레너 선로를 이용한 온칩 초소형 임피던스 변환기에의 응용)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1248-1256
    • /
    • 2008
  • In this paper, basic characteristics of transmission line employing PPGM (periodically perforated ground metal) were investigated using theoretical and experimental analysis.According to the results, unlike the conventional PBG (photonic band gap) structures, the characteristic impedance of the transmission line employing PPGM structure showed a real value, which exhibited a very small dependency on frequency. The transmission line employing PPGM structure showed a loss (per quarter wave length) higher by $0.1{\sim}0.2\;dB$ than the conventional microstrip line. According to the investigation of the dependency of RF characteristic on ground condition, the RF characteristic of the transmission line employing PPGM structure was hardly affected by the ground condition in the frequency lower than Ku band, but fairly affected in the frequency higher than Ku band, which indicated that coplanar waveguide employing PPGM structure was optimal for RF characteristic and reduction of size. Considering above results, impedance transformer was developed using coplanar waveguide with PPGM structure for the first time, and good RF characteristics were observed from the impedance transformer. In case that {\lambda}/4$ impedance transformer with a center frequency of 9 GHz was fabricated for a impedance transformation from 20 to10 {\Omega}$, the line width and length were 20 and $500\;{\mu}m$, respectively, and its size was only 0.64 % of the impedance transformer fabricated with conventional microstrip lines. Above results indicate that the transmission line employing PPGM is a promising candidate for a development of matching and passive elements on MMIC.

A Study on a Meander line employing Periodic Patterned Ground Structure on GaAs MMIC (GaAs MMIC 상에서 주기적 접지구조를 가지는 미앤더 선로에 관한 연구)

  • Jung, Bo-Ra;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.325-331
    • /
    • 2010
  • In this study, highly miniaturized short-wavelength meander line employing eriodically patterned ground structure (PPGS) was developed for application to miniaturized on-chip passive component on GaAs MMIC (monolithic microwave integrated circuit). The meander line employing PPGS showed shorter wavelength and slow-wave characteristic compared with conventional meander line. The wavelength of the meander line employing PPGS structure was 17 % of the conventional meander line on GaAs MMIC. Due to its slow-wave structure, the meander line employing PPGS exhibited large propagation constant than conventional meander line, which resulted in larger phase shift and shunt inductance value. Above results indicate that the meander line employing PPGS is a promising candidate for application to a development of miniaturized on-chip RF components as well as inductor with a high inductance value on GaAs MMIC.