• Title/Summary/Keyword: 명사구

Search Result 150, Processing Time 0.024 seconds

Alleviating Syntactic Term Mismatches in Korean Information Retrieval (한국어정보검색에서 구문적 용어불일치 완화방안)

  • Yun, Bo-Hyun;Kim, Sang-Bum;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.143-149
    • /
    • 1998
  • 한국어 정보검색에서 복합명사와 명사구로 발생하는 색인어와 질의어간의 구문적 용어 불일치는 많은 문제를 일으켜왔다. 본 논문에서는 복합명사 분해와 명사구 정규화를 함께 수행하여 유사도 측정값을 적당히 유지함으로써 재현율을 저하시키지 않고서 정확률을 향상시킬 수 있는 구문적 용어불일치 완화방안을 제시하고자 한다 색인모듈에서는 통계정보를 이용하여 복합명사를 분해하고, 의존관계를 이용하여 명사구를 정규화한다. 분해되고 정규화된 키워드에 경계정보 '/'가 할당되고, 가중치가 계산된다. 검색모듈에서는 경계정보를 이용하여 부분일치를 고려하는 유사도 계산을 수행한다. KTSET 2.0으로 실험한 결과, 제안한 방법은 구문적 용어불일치를 완화할 수 있으며, 재현율을 저하시키지 않고서 정확률을 향상시킬 수 있음을 보인다.

  • PDF

Implementation of Phrase-based Indexing (구 기반 색인 시스템의 구현)

  • Lee, Chung-Hee;Kim, Hyun-Jin;Jang, Myung-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.63-69
    • /
    • 2001
  • 정보 검색 결과의 정확성을 높이기 위해서는 상위수준의 색인 정보를 이용한 검색 기법이 요구된다. 상위수준의 색인을 하기 위해서는 구문 분석을 이용할 필요가 있지만 웹 페이지를 이용하는 웹 검색에서는 웹 폐이지 자체의 오류 때문에 구문 분석을 할 때 실패할 확률이 높으므로 견고한 구문 분석이 요구된다. 본 논문은 구, 문장에 기반한 색인 기법 및 기존 색인 방법을 병행해서 사용하는 시스템에 대하여 소개한다. 본 논문에서 소개하는 시스템은 5가지 방법의 색인 기법을 사용한다. 각 색인 기법은 적용될 분야 또는 범위에 따라 선택적으로 사용될 수 있다. 색인 기법은 1)명사 색인 2)명사+용언 색인 3)명사+용언+문장정보 색인 4)명사구 색인 5)중심어-종속어(Head-Modifier) 색인으로 나누어진다. 색인 기법 중 4와 5의 경우, 구문 분석된 결과를 사용하여 특정 명사구 및 중심어-종속어 관계를 고려함으로써 문서의 특성을 잘 나타내는 색인어를 추출할 수 있고 그러므로 정보검색의 성능을 향상시키는 기반 기술로 사용될 수 있다.

  • PDF

Causal Relation Extraction Using Cue Phrases and Lexical Pair Probabilities (단서 구문과 어휘 쌍 확률을 이용한 인과관계 추출)

  • Chang, Du-Seong;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.163-169
    • /
    • 2003
  • 현재의 질의응답 시스템은 TREC(Text Retrieval Conference) 질의집합에 대해 최대 80% 정도의 응답 성공률을 보이고 있다. 하지만 질의 유형에 다라 성능의 많은 차이가 있으며, 인과관계에 대한 질의에 대해서는 매우 낮은 응답 성공률을 보이고 있다. 본 연구는 인접한 두 문장 혹은 두 문장 혹은 두 명사구 사이에 존재하는 인과관계를 추출하고자 한다. 기존의 명사구 간 인과관계 추출 연구에서는 인과관계 단서구문과 두 명사구의 의미를 주요한 정보로 사용하였으나, 사전 미등록어가 사용되었을 때 올바른 선택을 하기 어려웠다. 또한, 학습 코퍼스에 대한 인과관계 부착과정이 선행되어야 하며, 다량의 학습자료를 사용하기가 어려웠다. 본 연구에서는 인과관계 명사구 쌍에서 추출된 어휘 쌍을 기존의 단서구문과 같이 사용하는 방법을 제안한다. 인과관계 분류를 위해 나이브 베이즈 분류기를 사용하였으며, 비지도식 학습과정을 사용하였다. 제안된 분류 모델은 기존의 분류 모델과 달리 사전 미등록어에 의한 성능 저하가 없으며, 학습 코퍼스의 인과관계 분류 작업이 선행될 필요 없다. 문장 내 명사구간의 인과관계 추출 실험 결과 79.07%의 정확도를 얻었다. 이러한 결과는 단서구문과 명사구 의미를 이용한 방법에 비해 6.32% 향상된 결과이며, 지도식 학습방식을 통해 얻은 방법과 유사한 결과이다. 또한 제안된 학습 및 분류 모델은 문장간의 인과관계 추출에도 적용가능하며, 한국어에서 인접한 두 문장간의 인과관계 추출 실험에서 74.68%의 정확도를 보였다.

  • PDF

Integrated Indexing Method using Compound Noun Segmentation and Noun Phrase Synthesis (복합명사 분할과 명사구 합성을 이용한 통합 색인 기법)

  • Won, Hyung-Suk;Park, Mi-Hwa;Lee, Geun-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.84-95
    • /
    • 2000
  • In this paper, we propose an integrated indexing method with compound noun segmentation and noun phrase synthesis. Statistical information is used in the compound noun segmentation and natural language processing techniques are carefully utilized in the noun phrase synthesis. Firstly, we choose index terms from simple words through morphological analysis and part-of-speech tagging results. Secondly, noun phrases are automatically synthesized from the syntactic analysis results. If syntactic analysis fails, only morphological analysis and tagging results are applied. Thirdly, we select compound nouns from the tagging results and then segment and re-synthesize them using statistical information. In this way, segmented and synthesized terms are used together as index terms to supplement the single terms. We demonstrate the effectiveness of the proposed integrated indexing method for Korean compound noun processing using KTSET2.0 and KRIST SET which are a standard test collection for Korean information retrieval.

  • PDF

Term Weighting Method for Natural Language Query Sentence (자연언어 질의 문장의 용어 가중치 부여 기법)

  • Kang, Seung-Shik;Lee, Ha-Gyu;Son, So-Hyun;Moon, Byung-Joo;Hong, Gi-Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.223-227
    • /
    • 2002
  • 자연언어 질의 문장으로부터 검색어로 사용될 질의어의 추출 및 질의어 가중치를 계산하기 위하여 질의 문장들의 유형을 분석하였으며, 질의어 구문의 특성에 따라 용어들의 가중치를 계산하는 방법을 제안하였다. 용어의 가중치를 부여할 때 띄어쓴 복합명사와 접속 관계 등에 의해 연결된 명사구는 질의어 가중치를 동등하게 적용할 필요가 있다. 질의 문장에서 가중치가 동등하게 적용되는 명사구를 인식하기 위한 목적으로 구현된 명사구 chunking을 수행한 후에 각 용어들에 대한 질의어 가중치를 계산한다. 질의어 가중치를 계산하기 위하여 용어의 유형, 질의 구문의 특성, 문서 유형을 지칭하는 용어, 조사 유형, 용어의 길이 등에 따라 가중치를 조절하는 방법을 사용한다. 용어유형에 의한 가중치 계산은 추출된 용어의 품사 정보와 전문 용어 사전, 부사성 명사 사전을 이용하였다.

  • PDF

A Neurolinguistic Study of Korean Scrambling: An Event-related Potentials(EPR) based Study (한국어 어순재배치(scrambling) 문장의 신경언어학적 연구)

  • Hwang, Yu Mi;Lee, Kap-Hee;Yun, Yungdo
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.29-34
    • /
    • 2012
  • 본 연구는 한국어 어순재배치(scrambling) 문장의 이해 과정에서 발생되는 대뇌 활동을 사건관련전위(event-related Potentials; ERPs) 이용하여 살펴보기 위하여 실시되었다. 네 개의 어절로 구성된 표준 어순 문장(일년만에 마님이 영감을 만났어요.)과 어순재배치 문장(일년만에 영감을 마님이 만났어요.)을 어절별로 제시하고 첫 번째 명사구(NP1), 두 번째 명사구(NP2), 동사(Verb)의 시작점(onset)에서 측정한 뇌파를 비교하였다. 뇌파의 분석은 대뇌 영역을 중심선(midline), 중앙(medial), 편측(lateral)로 나누어 전후 분포(anterior-posterior distribution)와 정중선(midline)의 열에 의해 좌우 반구(hemisphere)로 분리하여 분석하였다. 분석 결과 중심선 영역에서 표준 어순에 비해 뒤섞기 어순에서 300-500ms 시간 창(time window)에서 큰 부적 전위(negative potential)가 관찰되었으며 이는 어순재배치로 인한 N400효과로 해석되며 P600효과는 관찰되지 않았다. 특히 첫 번째 명사구에서 문장유형(표준 어순 vs. 어순재배치)의 차이가 가장 크게 관찰되었으며 두 번째 명사구에서는 중앙에서 문장유형과 반구(좌우반구)의 상호작용이 관찰되었고, 동사에서는 문장유형과 반구, 문장유형과 전극 위치의 전후 분포와의 상호작용이 관찰되었다. 본 연구 결과에서 관찰된 N400효과는 독일어와 일본어를 대상으로 한 어순재배치 연구 결과와 유사하며 한국어 어순재배치 문장에 관한 사건관련 전위를 고찰하였다는 점에서 의의가 있다.

  • PDF

Korea-English Noun Phrase Machine Translation (한국어와 영어의 명사구 기계 번역)

  • Cho, Hee-Young;Seo, Hyung-Won;Kim, Jae-Hoon;Yang, Sung-Il
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.273-278
    • /
    • 2006
  • 이 논문에서 통계기반의 정렬기법을 이용한 한영/영한 양방향 명사구 기계번역 시스템을 설계하고 구현한다. 정렬기법을 이용한 기계번역 시스템을 구축하기 위해서는 않은 양의 병렬말뭉치(Corpus)가 필요하다. 이 논문에서는 병렬 말뭉치를 구축하기 위해서 웹으로부터 한영 대역쌍을 수집하였으며 수집된 병렬 말뭉치와 단어 정렬 도구인 GIZA++ 그리고 번역기(decoder)인 PARAOH(Koehn, 2004), RAMSES(Patry et al., 2002), MARIE(Crego et at., 2005)를 사용하여 한영/영한 양방향 명사구 번역 시스템을 구현하였다. 약 4만 개의 명사구 병렬 말뭉치를 학습 말뭉치와 평가 말뭉치로 분리하여 구현된 시스템을 평가하였다. 그 결과 한영/영한 모두 약 37% BLEU를 보였으나, 영한 번역의 성공도가 좀더 높았다. 앞으로 좀더 많은 양의 병렬 말뭉치를 구축하여 시스템의 성능을 향상시켜야 할 것이며, 지속적으로 병렬 말뭉치를 구축할 수 있는 텍스트 마이닝 기법이 개발되어야 할 것이다. 무엇보다도 한국어 특성에 적합한 단어 정렬 모델이 연구되어야 할 것이다. 또한 개발된 시스템을 다국어 정보검색 시스템에 직접 적용해서 그 효용성을 평가해보아야 할 것이다.

  • PDF

Korean Syntax Analysis Using Sentence Pattern Information (문형 정보를 이용한 한국어 구문 분석)

  • Han, Yong-Gi;Hwang, Yi-Gyu;Lee, Yong-Seok
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.23-29
    • /
    • 1995
  • 대부분의 한국어 구문 분석은 용언과 명사구 사이의 하위범주화 정보를 이용하여 용언에 대한 명사구의 문법적 역할을 밝히는 방향으로 구문 분석을 시도하였다. 여기에 이용된 용언의 하위 범주화 정보가 단지 자릿수 서술어나 형용사, 자동사, 타동사 등으로 분류하는 수준이었기 때문에 구문 모호성이 많이 발생하고 틀린 문장이 구문적으로 옳기 때문에 옳은 문장으로 인식되는 경우가 발생하였다. 이러한 문제점을 해결하기 위하여 본 논문에서는 한국어의 용언에 따른 문장 형태(문형)를 세분류하고 문장에 필수적으로 나타나는 명사구(NP[case])와 수의적으로 나타나는 명사구(NP[case])를 분류하여 분석을 시도하였다. 확장된 PATR II로 문법을 기술하여 동적인 파싱을 쉽게 제어할 수 있도록 하였다. 문형 정보는 한국어의 기본 구조를 자연스럽게 표현할 수 있기 때문에 그 자체를 기계번역을 위한 한국어 문법으로 설정하는 것이 타당하다고 생각된다.

  • PDF

Relationship between Alternating Attention and Context Use during Sentence Processing in Older and Younger Adults (정상노인과 젊은 성인의 문맥을 이용한 문장처리와 교대주의력의 관계)

  • Park, Youngmi
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.527-539
    • /
    • 2018
  • Cognitive decline in aging is known to yield detrimental effects in syntactic processing and working memory capacity is the most crucial cognitive function in understanding older adults' sentence processing skills. This study examined how young and older adults utilize contextual information while resolving NP-attached Ps vis word-by-word self-paced reading paradigm. In addition, the study asked which cognitive functions play roles on the use of a NP-supporting context during processing of NP-attached PP. When NP-attached PP was presented in a supporting context, both age groups performed faster than in the null context condition. Among different cognitive functions, alternating attention skills were correlated with the ability utilizing context during syntactic ambiguity resolution and working memory capacity was not found to be crucial for this study. In conclusion, this study suggests that aging does not always affect older adults' syntactic processing negatively and relevant cognitive function may vary depending on the type of syntactic structure.

Text Chunking by Rule and Lexical Information (규칙과 어휘정보를 이용한 한국어 문장의 구묶음(Chunking))

  • 김미영;강신재;이종혁
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.103-109
    • /
    • 2000
  • 본 논문은 효율적인 한국어 구문분석을 위해 먼저 구묶음 분석(Chunking) 과정을 적용할 것을 제안한다. 한국어는 어순이 자유롭지만 명사구와 동사구에서는 규칙적인 어순을 발견할 수 있으므로, 규칙을 이용한 구묶음(Chunking) 과정의 적용이 가능하다. 하지만, 규칙만으로는 명사구와 동사구의 묶음에 한계가 있으므로 실험 말뭉치에서 어휘 정보를 찾아내어 구묶음 과정(Chunking)에 적용한다. 기존의 구문분석 방법은 구구조문법과 의존문법에 기반한 것이 대부분인데, 이러한 구문분석은 다양한 결과들이 분석되는 동안 많은 시간이 소요되며 이 중 잘못된 분석 결과를 가려서 삭제하기(pruning)도 어렵다. 따라서 본 논문에서 제시한 구묶음(Chunking) 과정을 적용함으로써, 잘못된 구문분석 결과를 미연에 방지하고 의존문법을 적용한 구문분석에 있어서 의존관계의 설정 범위(scope)도 제한할 수 있다.

  • PDF