본 논문에서는 격조사의 구문적인 특성을 이용하여, 수식어까지 포함한 명사구 추출 방법을 연구한다. 명사구 판정을 위해 연속적인 형태소열을 문맥정보로 사용하던 기존의 방법과 달리, 명사구의 처음과 끝 그리고 명사구 주변의 형태소를 이용하여 명사구의 수식 부분과 중심 명사를 문맥정보로 사용한다. 다양한 형태의 문맥 정보들은 최대 엔트로피 원리(Maximum Entropy Principle)에 의해 하나의 확률 분포로 결합된다. 본 논문에서 제안하는 명사구 추출 방법은 먼저 구문 트리 태깅된 코퍼스에서 품사열로 표현되는 명사구 문법 규칙을 얻어낸다. 이렇게 얻어낸 명사구 규칙을 이용하여 격조사와 인접한 명사구 후보들을 추출한다. 추출된 각 명사구 후보는 학습 코퍼스에서 얻어낸 확률 분포에 기반하여 명사구로 해석될 확률값을 부여받는다. 이 중 제일 확률값이 높은 것을 선택하는 형태로 각 격조사와 관계있는 명사구를 추출한다. 본 연구에서 제시하는 모델로 시험을 한 결과 평균 4.5개의 구를 포함하는 명사구를 추출할 수 있었다.
본 논문에서는 격조사의 구문적인 특성을 이용하여, 수식어까지 포함한 명사구 추출 방법을 연구한다. 명사구 판정을 위해 연속적인 형태소열을 문맥정보로 사용하던 기존의 방법과 달리, 명사구의 처음과 끝 그리고 명사구 주변의 형태소를 이용하여 명사구의 수식 부분과 중심 명사를 문맥정보로 사용한다. 다양한 형태의 문맥정보들은 최대 엔트로피 원리(Maximum Entropy Principle)에 의해 하나의 확률 분포로 결합된다. 본 논문에서 제안하는 명사구 추출 방법은 먼저 구문 트리 태깅된 코퍼스에서 품사열로 표현되는 명사구 문법 규칙을 얻어낸다. 이렇게 얻어낸 명사구 규칙을 이용하여 격조사와 인접한 명사구 후보들을 추출한다. 추출된 각 명사구 후보는 학습 코퍼스에서 얻어낸 확률 분포에 기반하여 명사구로 해서될 확률값을 부여받는다. 이 중 제일 확률값이 높은 것을 선택하는 형태로 각 격조사와 관계있는 명사구를 추출한다. 본 연구에서 제시하는 모델로 실험을 한 결과 평균 4.5개의 구를 포함하는 명사구를 추출할 수 있었다.
본 논문에서는 한국어 문장의 통사적 특성과 제한된 통계정보를 이용한 명사구의 패턴에 의한 명사구 인식에 대해 기술한다. 본 논문의 명사구 인식기는 관형사와 관형격 조사, 관형형 어미에 관련된 패턴의 명사구 인식을 수행하고, 시간과 장소를 나타내는 특정한 명사에 의해 유도되는 명사구를 인식한다. 또한 복합명사 결합의 문제를 의미쌍 간의 결합도의 문제로 분류하고 해결방법을 제시한다. 실험 결과는 본 논문에서 제안하는 통사적으로 확실한 정보와 제한된 통계정보를 이용한 명사구 인식기가 높은 수준의 명사구 인식을 수행한다는 것을 보여준다.
중국어의 명사구는 기본 명사구, 최단 명사구, 최장 명사구 등으로 분류할 수 있다. 최장 명사구를 잘 식별해 낼 수 있다면 구문 분석의 복잡도를 크게 낮추고 구문분석의 성능을 향상시킬 수 있다. 각 단어는 시작 태그(O), 종결 태그(C), 한 단어로 이루어진 구 태그(S), 그 외의 태그(N) 등 4가지로 태깅된다. 본 논문은 서로 다른 윈도우 크기(window size)에 기반한 5가지 SVMs 학습 모델을 구축하고 시스템 합성 방법을 이용하여 중국어 최장 명사구 식별에서 85.17%의 정확률을 보여줬다.
세종전자사전은 한국어 어휘의 정보를 총체적으로 표상하는 전산어휘자료체이다. 세종전자사전은 궁극적으로 다양한 유형과 기능의 한국어 자동처리에의 활용을 목표로 한다. 세종체언전자사전은 최종적으로 5만여 항목을 대상으로 구축될 것이다. 세종명사전자사전은 전산적 효율성을 고려하여 명사 어휘의 정보를 8개의 하위정보구획과 50여개의 세부정보항목으로 구분하여 표상한다. 특히, 명사의 어휘 통사적인 결합에 관한 정보는 한국어 명사구와 문장의 자동생성에 직접 활용될 수 있는 정보이다. 명사는 수식어 요소 또는 조사와 결합하여 명사구를 형성하고, 동사 및 형용사와 결합하여 문장의 생성에 참여한다. 개별 명사들은 이 과정에서 다양한 제약적인 양상들을 보여주고 있으며, 세종명사전자사전은 이 정보들을 명시적으로 표상한다. 또한 명사는 기능동사와 결합하는 술어명사와 그렇지 않은 비술어명사로 구분이 된다. 술어 명사가 기능동사와 결합하여 문장을 형성할 때, 명사와 그 논항들은 다양한 통사적 기능을 담당한다. 또한 술어명사는 논항과 결합하여 명사구를 형성한다. 그러나, 술어명사의 명사구 형성과 기능동사의 결합은 불규칙적이고, 명사와 기능동사의 의미적 특성에 따라 다양한 제약이 발견된다. 이 정보들의 정밀한 표상은 개별 술어명사로부터 생성될 수 있는 가능한 명사구와 문장의 형태를 구체적으로 밝혀주게 된다. 세종명사전자사전의 어휘 통사적인 결합에 관한 정보들은 명사구 또는 문장의 자동생성의 정확성과 효율성을 높여줄 것이다.
한국어의 기반 명사구, 즉 비재귀적인 단순 명사구를 인식하는 비통계적인 규칙 기반 학습 기법을 제안한다. 학습 말뭉치에 기반 명사구에 대한 초기 예측이 표시되어 있고 목표 말뭉치에는 올바른 기반 명사구가 태그(tag)의 형식으로 표시되어 있다면, 규칙 기반 학습은 먼저 인접한 주위 형태소들의 다양한 문법적 정보를 나타내는 규칙 템플릿을 이용하여 기반 명사구 태그를 수정하는 규칙 후보들을 생성해 내고, 이 후보들 가운데 학습 말뭉치를 목표 말뭉치에 가장 가깝게 변환하는 일련의 규칙들을 차례로 얻어낸다. 국어정보베이스의 15만 단어 규모의 트리 태그 부착 말뭉치를 이용한 실험 결과 386개의 변환 규칙을 얻었으며, 이를 이용하여 90% 이상의 높은 기반 명사구 인식 정확도를 얻을 수 있다.
기반 명사구는 명사구 내부에 다른 명사구를 포함하지 않는 명사구로 정의된다. 이러한 기반명사구인식은 구문해석의 성능을 향상시키기 위한 방법으로 많이 사용되어 왔다. 효과적인 기반 명사구인식을 위해서는 올바른 학습자질의 선택과 적절한 문맥의 범위의 설정이 중요하다. 이러한 관점에서 기존의 연구에서는 여러 가지 학습자질과 문맥의 범위로 기반명사구를 인식하였다. 하지만 기존의 연구들에서는 학습자질로 단순한 어휘, 품사, 띄어쓰기 정보만을 사용하여 좁은 범위의 문맥정보만을 사용하였다. 본 논문에서는 한국어의 기반 명사구 인식을 위해 학습의 자질로 어절의 중심어를 사용하는 HMM모델을 제안한다. 본 논문의 방법을 통해 정확률 94.3%, 재현률 93.2%의 성능을 얻었다.
본 논문은 Stanford의 다 단계 시브(Multi-pass Sieve) 상호참조해결을 기반으로, 한국어에 적용한 한국어 상호참조해결(선행 연구)을 이용하여 한정 명사구에 대한 처리와 확장된 대명사 상호참조해결 방법을 제안한다. 지시 관형사와 명사가 결합하여 형성되는 한정 명사구는 일반 멘션(mention)의 특징과 대명사 속성을 한 번에 갖게 된다. 이렇게 되면, 한정 명사구는 모든 시브(sieve)에서 상호참조를 진행할 수 있게 된다. 따라서 이런 특징으로 한정 명사구를 어떤 관점(멘션 또는 대명사)에서 상호참조해결하는 것이 좋은지 보인다. 또한 이런 한정 명사구의 대명사 속성을 이용하기 위해 문법적 의미적 규칙을 적용할 것을 제안한다. 그 결과, 본 논문의 선행 연구인 한국어 상호참조해결에 비하여 CoNLL 값이 약 0.8%만큼 향상되어 61.45%를 측정하였다.
정보검색의 정확률을 높이는 것이 최근 정보검색 연구의 추세이며, 정확률을 높일 수 있는 방법 중 하나로 명사구단위 색인이 있다. 명사구 색인을 하는 방법에는 구문분석기를 이용하는 방법과 패턴 규칙을 이용하는 방법으로 나눌 수 있다. 구문분석기를 이용하여 전체 문장을 분석한 후 명사구단위 색인을 할 경우, 범용적으로 이용할 수 있지만 속도와 정확도가 떨어진다는 문제점이 있으며 패턴 규칙을 이용하는 경우는 속도는 빠르지만 정확도 및 확장성에 문제를 가지고 있다. 이런 문제들을 해결하기 위해 본 논문에서는 문장으로부터 명사구를 분할한 후, 분할된 명사구를 완전 구문 분석하여 색인하는 방법을 제안한다. 명사구는 속격어구와 관형형 명사구를 대상으로 하였고, 구 분할은 속격조사와 관형형어미를 중심으로 주변 형태소와 품사를 고려하는 규칙을 만들어 실행하였다. 실험대상은 짧은 문장, 중간문장, 긴 문장을 각각 25 개를 선정하여 실험하였고, 구 분할을 이용할 경우 평균 재현율은 86%, 평균 정확률은 74% 정도의 성능을 보였다. 긴 문장의 경우, 구 분할을 이용하지 않는 경우에 비해서 정확도 및 속도에서 월등한 성능향상이 있었다.
한국어에서의 명사구 색인을 위한 기존의 방법들은 주로 간단한 규칙을 이용하여 왔고 그 결과 문장에 존재하는 모든 명사구를 추출하지 못했다. 이를 해결하기 위하여 본 논문에서는 개념 기반 명사구 색인 방법을 제안한다. 하나의 문장은 하나 이상의 개념으로 이루어져 있으므로, 명사구 추출은 개념을 고려하여 이루어져야 바람직하다 문장은 구문적으로 하나 이상의 내포문으로 이루어져 있다. 일반적으로 내포문 단위 내의 용어들이 나타내는 각각의 개념들은 서로 높은 연관성을 가진다. 그러므로 문장이 가지는 개념의 상이성을 내포문의 개념 상이성으로 축소할 수 있다. 문장을 내포문 단위로 분할하기 위하여 의존 문법을 기반한 구문분석과 공기정보를 이용한다. 특히 공기정보는 원거리 의존관계(long distance dependency)를 결정하여 한 내포문에 속함을 밝혀내는 데 도움을 준다. 이러한 내포문 내의 의존관계를 이용하여 명사구를 추출한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.