• Title/Summary/Keyword: 면적 기준

Search Result 1,530, Processing Time 0.027 seconds

Analysis of the effects of the seawater intrusion countermeasures considering future sea level rise in Yeosu region using SEAWAT (SEAWAT을 이용한 미래 해수면 상승에 따른 여수지역 해수침투 저감 대책 효과 분석)

  • Yang, Jeong-Seok;Lee, Jae-Beom;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.515-521
    • /
    • 2018
  • Seawater intrusion areas were calculated in Yeosu region considering sea level rise and the effects of countermeasures for seawater intrusion were analyzed using SEAWAT program. The estimated seawater intrusion area was $14.90km^2$ in 2015. When we applied climate change scenarios the area was changed to $19.19km^2$ for RCP 4.5 and $20.43km^2$ for RCP 8.5 respectively. The mitigation effects by artificial recharge with total $50m^3/d$, $100m^3/d$, and $300m^3/d$ are from 3.75% to 10.68% for RCP 4.5, and from 5.82% to 10.77% for RCP 8.5 respectively. If we install barrier wall with the thickness 0.8 m, 1.3 m, and 1.8 m, the mitigation effects are from 6.67% to 12.04% for RCP 4.5, and from 6.17% to 14.98% for RCP 8.5 respectively. The results of this study can be used to be a logical means of quantitative grounds for policy decisions to prevent groundwater contamination by seawater intrusion and subsequent secondary damage in coastal areas.

The maximum limiting characteristic method-based land suitability assessment for peaches (Prunus persica) and grapes (Vitis vinifera L.) using rasterized data of soil and climate on agricultural land in South Korea (토양 및 기후정보 통합 최대저해인자법에 의한 복숭아와 포도의 적지 평가)

  • Kim, Hojung;Koo, Kyung-Ah;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.286-296
    • /
    • 2019
  • Land suitability assessments have been a crucial issue for enhancing productivity in agriculture and conserving agricultural lands. Based on soil and climate information, land suitability assessment for peaches (Prunus persica) and grapes (Vitis vinifera L.) were conducted using the maximum limiting characteristic method (MLCM) in South Korea. In peaches, S1 (highly suitable) exists on 2.21% of the land, S2 (moderately suitable) on 19.20%, N1 (currently not suitable) on 12.07%, and N2 (permanently not suitable) on the remaining 66.52%. In grapes, 3.65% of the land is classified as S1, 17.98% as S2, 11.85% as N1 and 66.52% as N2. In both fruit trees, the results acquired from soil and climatic information were similar to those from soil information alone. The data also suggest that the grades by soil information were relatively low over the land. With the assumption that the more suitable area a province has, the more will be cultivated for the fruit trees, we compared the percentages of area for peach and grape farming per province with the results by MLCM, and suggested that some provinces with a small percentage of farm can be encouraged to plant more in suitable areas as dictated by MLCM for the species. In the near future, we plan to use an advanced method such as analytic hierarchy process (AHP) to conduct similar tests, in which having reference data of yields or benefits per farm can efficiently increase the accuracy of the measurements.

Development of Enhanced DAP(Dose Area Product) (성능이 향상된 면적선량계(DAP) 개발)

  • Lee, Young-Ji;Lee, Sang-Heon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.739-742
    • /
    • 2019
  • In this paper, we propose enhanced DAP(Dose Area Product). The development of enhanced DAP proposed in this paper has optimized the area dose meter that was developed previously. The development of enhanced DAP performed Optimized design of charge integrator and ADC circuit, optimization of line transceiver for RS-485 communication, optimization of display circuit, and optimization of PC-based control program for interlocking and aging. As a result of evaluating the performance of the proposed system in an accredited testing laboratory, Radiation dose dependence and Radiation quality dependence were measured to be 4.2%, which is below ${\pm}15%$ of international standard. Energy range/Tube voltage was confirmed in the range of 30~150kV. The sensitivity difference between sensor field and sensor field area dose sensitivity was measured to be 4.3%, and it was confirmed that it operates normally under ${\pm}15%$ of international standard. In order to measure the reproducibility of the area dosimeter, it was confirmed that it was 0% and it was operated normally at less than 2% of IEC60580 recommendation. Digital resolution was confirmed to be a minimum unit of $0.01{\mu}Gy{\cdot}m^2$ within the error range for the reference dose per hour.

A Study on Space Program Based on the Library Facility Program (도서관 소요공간에 따른 면적구성에 관한 연구)

  • Ko, Jae-min;Cho, Hyun-Yang;Ko, Hung-Kwon
    • Journal of Korean Library and Information Science Society
    • /
    • v.46 no.3
    • /
    • pp.349-379
    • /
    • 2015
  • In the 1980's opening 79 of the end of 2013, the National Public Library that had been It was 885 its opening remains in effect. Especially in the 2000s after 60% of the whole library, a library erected since the advent of the library is enough to be a significant quantitative expansion. The resulting to make a qualitative aspect of public libraries and increase users' needs for efficient space configuration. IIn particular, the user is to serve the needs of digital reading room and the increase of the cultural training changes after 2000 years ago, and appears as due to the implications of space configuration in an age-appropriate library space off the rate plan is a necessary point. The study in the 1980s-1990s, built public library established since the year 2000 centered on public library mutual comparative analysis of space configuration form. Book reading function was the conservation and highlight 1980-1990s and considered by the side of the users culture area extended since the 2000s, public library takes the difference between the ratio of the area of the facility by the area in which you can meet the standards required and the age.

Composite model for seawater intrusion in groundwater and soil salinization due to sea level rise (해수면 상승으로 인한 지하수 해수침투 및 토양 염류화 합성 평가모델)

  • Jung, Euntae;Park, Namsik;Cho, Kwangwoo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.387-395
    • /
    • 2017
  • Sea level rise, accompanied by climate change, is expected to exacerbate seawater intrusion in the coastal groundwater system. As the salinity of saturated groundwater increases, salinity can increase even in the unsaturated soil above the groundwater surface, which may cause crop damage in the agricultural land. The other adverse impact of sea level rise is reduced unsaturated soil thicknesses. In this study, a composite model to assess impacts of sea level rise in coastal agricultural land is proposed. The composite model is based on the combined applications of a three dimensional model for simulating saltwater intrusion into the groundwater and a vertical one dimensional model for simulating unsaturated zone flow and transport. The water level and salinity distribution of groundwater are calculated using the three dimensional seawater intrusion model. At some uppermost nodes, where salinity are higher than the reference value, of the 3D mesh one dimensional unsaturated zone modeling is conducted along the soil layer between the ground water surface and the ground surface. A particular location is judged salinized when the concentration at the root-zone depth exceeds the tolerable salinity for ordinary crops. The developed model is applied to a hypothetical agricultural reclamation land. IPCC RCP 4.5 and 8.5 scenarios were used as sea level rise data. Results are presented for 2050 and 2100. As a result of the study, it is predicted that by 2100 in the climate change scenario RCP 8.5, there will be 7.8% increase in groundwater saltwater-intruded area, 6.0% increase of salinized soil area, and 1.6% in increase in water-logging area.

Assessing Red List categories to a Korean endangered species based on IUCN criteria - Hanabusaya asiatica (Nakai) Nakai- (멸종위기식물의 IUCN 적색목록 보전지위 평가 -금강초롱꽃에 대하여-)

  • Park, Soo-Kyung;Kim, Hui;Chang, Chin-Sung
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.2
    • /
    • pp.128-138
    • /
    • 2013
  • The conservation status of an endemic perennial herb, Hanabusaya asiatica (Nakai) Nakai (Campanulaceae) was determined by applying the IUCN risk assessment criteria from our field study and available specimen data. Also, the GIS technology was used to develop a species distribution map to calculate the extent of occurrence (EOO) and area of occupancy (AOO) for the taxon. After two years of continuous field studies, 269 mature individuals were found in four localities in 2011, while 216 mature individuals were confirmed in three localities in 2012. Based on the following data, such as EOO (2,742 $km^2$), AOO (76 $km^2$) and estimated population size of mature individuals, the taxon, which is known as 20 localities in Korean peninsula, is evaluated as the category of Endangered (EN). A major difficulty in application of IUCN criteria to Korean rare plants were the lack of essential biological information and understanding the correct knowledge of the IUCN criteria in previous Korean studies. Sound conclusions regarding the conservation status of individual species require more intensive population studies, observations, and applying IUCN assessment procedures correctly.

Estimation of Runoff Coefficient according to Revision of Design Criteria, in case of Park (설계기준 변경에 따른 유출계수 추정 - 공원을 중심으로 -)

  • Kim, Taegyun;Kim, Tae Jin;Lee, Bo-Rim
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.209-217
    • /
    • 2016
  • The rational method is formed area, rainfall intensity and runoff coefficient that is representation of land use or surface type. A runoff coefficient is a range for a each surface conditions. Drainage Sewer Design Guideline revised at 2011 proposes return periods 10~30 year instead of 5~10 year for increasing design flood. Ponce and ASCE refer higher values of runoff coefficient require for higher values of rainfall intensity and return period, therefore runoff coefficient had to be corrected but not. In case of park, land use and surface type are different from Korea and U.S, so impervious area ratio is different. The runoff coefficient for park is estimated considering with impervious area ratio and return period. 1,004's parks in 20 cities are randomly selected for impervious area ratio and runoff coefficient is estimated. And a proportion of 30 year return period runoff coefficient to 10 year return period with rainfall duration is calculated for 69 weather stations. The estimated runoff coefficient is 0.43~0.54 for return period 10~30 year and the difference of region and rainfall duration is not significant.

A 12b 100MS/s 1V 24mW 0.13um CMOS ADC for Low-Power Mobile Applications (저전력 모바일 응용을 위한 12비트 100MS/s 1V 24mW 0.13um CMOS A/D 변환기)

  • Park, Seung-Jae;Koo, Byeong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.56-63
    • /
    • 2010
  • This work proposes a 12b 100MS/s 0.13um CMOS pipeline ADC for battery-powered mobile video applications such as DVB-Handheld (DVB-H), DVB-Terrestrial (DVB-T), Satellite DMB (SDMB), and Terrestrial DMB (TDMB) requiring high resolution, low power, and small size at high speed. The proposed ADC employs a three-step pipeline architecture to optimize power consumption and chip area at the target resolution and sampling rate. A single shared and switched op-amp for two MDACs removes a memory effect and a switching time delay, resulting in a fast signal settling. A two-step reference selection scheme for the last-stage 6b FLASH ADC reduces power consumption and chip area by 50%. The prototype ADC in a 0.13um 1P7M CMOS technology demonstrates a measured DNL and INL within 0.40LSB and 1.79LSB, respectively. The ADC shows a maximum SNDR of 60.0dB and a maximum SFDR of 72.4dB at 100MS/s, respectively. The ADC with an active die area of 0.92 $mm^2$ consumes 24mW at 1.0V and 100MS/s. The FOM, power/($f_s{\times}2^{ENOB}$), of 0.29pJ/conv. is the lowest of ever reported 12b 100MS/s ADCs.

Waterbody Detection from Sentinel-2 Images Using NDWI: A Case of Hwanggang Dam in North Korea (Sentinel-2 기반 NDWI를 이용한 수체 탐지 연구: 북한 황강댐을 사례로)

  • Kye, Changwoo;Shin, Dae-Kyu;Yi, Jonghyuk;Kim, Jingyeom
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1207-1214
    • /
    • 2021
  • In thisletter, we developed technology which can exclude effect of cloudsto perform remote waterbody detection based on Sentinel-2 optical satellite imagery to calculate the area of ungauged reservoirs and applied to the Hwanggang dam reservoir, a representative ungauged reservoir, to verify usability. The remote waterbody detection technology calculates the cloud blocking ratio by comparing the cloud boundary in the Sentinel-2 imagery and the reservoir boundary first. Next, itselects data whose cloud blocking ratio does not exceed a specific value and calculates NDWI (Normalized Difference Water Index) with selected imagery. In last, it calculatesthe area of the reservoir by counting the number of grids which have NDWI value considered as waterbody within the boundary of the target reservoir and correcting with cloud blocking ratio. To determine cloud blocking ratio threshold forselecting image, we performed the area calculation of Hwanggang dam reservoir from July 2018 to October 2021. As a result, when the cloud blocking ratio threshold wasset 10%, we confirmed that the result with large error due to clouds were filtered well and obtained 114 results that can show changes in Hwanggang dam reservoir area among 220 images.

An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature (위성영상을 이용한 도시녹지의 기온저감 효과 분석)

  • Yoon, Min-Ho;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • Urbanization brings several changes to the natural environment. Its consequences can have a direct effect on climatic features, as in the Urban Heat Island Effect. One factor that directly affects the urban climate is the green area. In urban areas, vegetation is suppressed in order to accommodate manmade buildings and streets. In this paper we analyze the effect of green areas on the urban temperature in Seoul. The period selected for analysis was July 30th, 2007. The ground temperature was measured using Landsat TM satellite imagery. Land cover was calculated in terms of city area, water, bare soil, wet lands, grass lands, forest, and farmland. We extracted the surface temperature using the Linear Regression Model. Then, we did a regression analysis between air temperature at the Automatic Weather Station and surface temperature. Finally, we calculated the temperature decrease area and the population benefits from the green areas. Consequently, we determined that a green area with a radius of 500m will have a temperature reduction area of $67.33km^2$, in terms of urban area. This is 11.12% of Seoul's metropolitan area and 18.09% of the Seoul urban area. We can assume that about 1,892,000 people would be affected by this green area's temperature reduction. Also, we randomly chose 50 places to analysis a cross section of temperature reduction area. Temperature differences between the boundaries of green and urban areas are an average of $0.78^{\circ}C$. The highest temperature difference is $1.7^{\circ}C$, and the lowest temperature difference is $0.3^{\circ}C$. This study has demonstrated that we can understand how green areas truly affect air temperature.