• Title/Summary/Keyword: 면내 좌굴

Search Result 69, Processing Time 0.025 seconds

Secondary Buckling Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 2차좌굴거동 해석)

  • Park Joo-Shin;Ko Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.67-74
    • /
    • 2006
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion rf the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design rf ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated secondary buckling behavior through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates (점진기능재료(FGM) 판의 휨, 진동 및 좌굴 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1043-1049
    • /
    • 2008
  • In this paper, we investigate the static response. natural frequencies and buckling loads of functionally graded material (FGM) plates, using a Navier method. The eigenvalues of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane. bending and shear stiffness of FGM plates art more complicated combination of material properties than a homogeneous element. In order to validate the present solutions, the reference solutions of rectangular plates based on the classical theory are used. The various examples of composite and FGM structures are presented. The present results are in good agreement with the reference solutions.

Analysis and Design of Support Strut in Innovative Prestressed Scaffolding(IPS) System (혁신적 프리스트레스트 가시설 구조시스템(IPS)에 적용되는 중간 버팀보의 해석 및 설계)

  • Kim, Sung Bo;Han, Man Yop;Kim, Moon Young;Kim, Nak Kyung;Han, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.627-636
    • /
    • 2005
  • The analysis and design procedure of intermediate support strut for the innovative prestressed scaffolding (IPS) system was presented in this paper. The stability check of intermediate support strut is required as the behavior of the strut system is similar to that of the built-up column. The computer analysis model of the support strut was constructed for in-plane and out-of-plane buckling analysis, and the design of the support strut was performed. Using the eigenvalue for the buckling load and the member forces of support strut under design earth pressure, the effective buckling length was estimated. The allowable axial and bending stresses were calculated considering the effective buckling length. The combined stresses due to these axial forces and bending moment were estimated to be satisfied the safety condition of the intermediate support strut.

Buckling and Vibration Analysis of Antisymmetric Angle-ply laminated Composite Plates using a Three-dimensional Higher-order Theory (3차원 고차이론을 이용한 역대칭 앵글-플라이를 갖는 복합재료 적층판의 좌굴 및 진동해석)

  • Lee, Won Hong;Han, Sung Cheon;Chun, Kyoung Sik;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.97-107
    • /
    • 2003
  • To obtain a more accurate response from larninated composite structures, the effect of transverse shear deformation, transverse normal strain/stress, and nonlinear variation of in-plane displacements vis-$\\grave{a}$-vis the thickness coordinate should be considered in the analysis. The improved higher-order theory was used to determine the critical buckling load and natural frequencies of laminated composite structures. Solutions of simply supported laminated composite plates and sandwiches were obtained in closed form using Navier's technique, with the results compared with calculated results using the first order and other higher-order theories. Numerical results were presented for fiber-reinforced laminates, which show the effects of ply orientation, number of layers, side-toithickness ratio, and aspects ratio.

Ultimate Strength Analysis of Connections of Floating Pendulum Wave Energy Converter (부유식 진자형 파력발전장치의 연결부 최종강도해석)

  • Sohn, Jung Min;Cheon, Ho Jeong;Shin, Seung Ho;Hong, Key Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • A floating offshore structure has high tendency to occur the buckling when compressive, bending and shear loads applied. When the buckling is occurred, in-plane stiffness of structure is remarkably decreased. And it has a harmful effect on the local structural strength as well as global structural strength. In the present study, it has been investigated the ultimate strength of tubular members which is located between a floater and a damping plate of the floating pendulum wave energy converter. Nonlinear finite element method is conducted using the initial imperfection according to 1st buckling mode which is obtained from the elastic buckling analysis. It is also noted the ultimate bending strength characteristic varying with a diameter, thickness and stiffeners of the tubular member.

Buckling of Fixedly Supported Orthotropic Plate under In-plane Linearly Distributed Forces (면내 선형분포하중을 받는 고정지지된 직교이방성판의 좌굴)

  • 정재호;채수하;남정훈;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.5-8
    • /
    • 2000
  • This paper presents the results of an elastic buckling analysis of orthotropic plate under in-plane linearly distributed forces. The analytical solution for the orthotropic plate whose boundaries were assumed to be simply supported was derived in the previous work. In this study the loaded edges of plate are assumed to be simply supported and other two edges are assumed to be fixed. For the buckling analysis Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under in-plane linearly distributed forces is presented.

  • PDF

Elastic Buckling of Elastically Restrained Orthotropic Plate with a Longitudinal Stiffener under In-plane Linearly Distributed Load (면내 선형분포하중을 받으며 두 변이 탄성구속되고 수평보강된 직교이방성판의 탄성좌굴)

  • 권성미;정재호;채수하;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.17-20
    • /
    • 2001
  • This paper presents the results of an elastic buckling analysis of elastically restrained orthotropic plate with a longitudinal stiffener under in-plane linearly distributed load. It is assumed that the loaded edges of web plate are simply supported and other two edges are elastically restrained against rotation. The stiffener is modeled as a beam element and its torsional rigidity is neglected. For the buckling analysis Lagrangian multiplier method is employed. The effects of restraint and longitudinal stiffener are presented in a graphical form.

  • PDF

In-Plane Buckling of Prime and Quadratic Parabolic Arches with Fixed Ends (양단고정 Prime과 Quadratic 포물선 아치의 면내좌굴에 관한 연구)

  • 이병구;김종만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.153-162
    • /
    • 1987
  • A numerical procedure for the analysis of slender arch buckling problems for uniform dead weight is presented in this paper. Such loading changes in the arch profile. The problem is nonlinear. The numerical procedure is limited to an inextensible analysis and to elastic behavior. Based upon a numerical integration technique developed by Newmark for straight beams, a large deflection bending analysis is combined with small deflection buckling routines to formulate the numerical procedure. The numerical procedure is composed of a combination of the numerical integration and successive approximations procedure. The results obtained in this study are as follows : 1.The critical loads obtained in this study coincide with the results by Austin so that the algorithm developed in this study is verified. 2.The numerical results are converged with good precision when the half arch is divided into 10 segments in both Prime and Quadratic section. 3.The critical loads are decreased as the ratios of rise versus span are increased. 4.The critical loads are increased as the moments of inertia at the ends are increased. 5.The critical loads of Prime section are larger than that of Quadratic section under the same profile conditions.

  • PDF

A Study on Measurement of Displacement Using ESPI Method in Square Tubes (ESPI를 이용한 정사각튜브의 변형계측)

  • 박찬주;김경석;정현철;장호섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.241-244
    • /
    • 1997
  • This paper proposes Electronic Speckle Pattern Interferometry(ESPI) for the quantitative buckling analysis of square tube, which is unable to be measured with previous methods. The quantitative buckling analysis in elasticity is important part to study strain-stress analysis of thick-plated tube and fatigue analysis. However, it is unsolved problem with theory and previous experimental method. The merits of ESPI, Whole-filed measurement and high accurate 3D-displacement measurement make it possible to determinate the buckling analysis in elasticity quantitatively.

  • PDF

Study on the Reinforced Method of Doubler Plate in Ship Hull Structure (선박 이중판의 보강법 연구)

  • 함주혁
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.144-149
    • /
    • 2001
  • A study for the structural strength analysis on the doubler plate subjected to the axial, biaxial in-plane compression and shear load has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate, non-linear elasto-plastic analysis is introduced. Gap element modeling for contact effect between main plate and doubler is prepared and nonlinear analysis procedures are illustrated based on MSC/N4W . In addition, some design guides are suggested through the consideration of several important effects such as corrosion of main plate, doubler width, doubler length and doubler thickness. Finally theses results are compared with developed design formula based on the buckling strength and general trends and design guides according to the variation of design parameters are discussed.

  • PDF