• Title/Summary/Keyword: 면굴절력

Search Result 25, Processing Time 0.009 seconds

Measurement of Refractive Power by Reflective image on the Negative Spherical Lens ((-) 구면 렌즈 면의 반사상에 의한 굴절력 측정)

  • Choi, Woon-Sang;Kim, Tae-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.417-421
    • /
    • 2004
  • We can see that two images of reflection are observed on the surface of a ophthalmic lens. These are the image reflected from front surface and back surface of lens, respectively. The reflective image shows to be affect by surface refractive power of front and back surface of lens. Total refractive power of lens is calculated by refractive power of front and back surface of lens. Accordingly, the ratio of image on the lens surface is able to measure refractive power of ophthalmic lens without helping of the lensmeter. The ratio of two reflective image measured on the lens surface is compared with the calculated ratio by the power measurement.

  • PDF

The Influence of the Front Surface Power and the Refraction Index on RMS Spot Diameter (전면 굴절력과 굴절률이 착락원의 크기에 미치는 영향)

  • Park, Seong-Jong;Shin, Cheol-Guen;Ju, Seok-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • To investigate the RMS SD(Root Mean Square Spot Diameter) in a back focal plane as the front surface power, the center thickness, and the refraction index vary, we use programs which are Cove V and LOSA 2.0, and consider a spectacle lens with back vertex power of -4.00D and diameter of 70 mm. We also consider the front surface power varied from 0.00 to 10.00D, the center thickness varied from 1.1 to 2.0 mm, and the indices which are $n_d$ = 1.498, 1.523, 1.586, and 1.660, respectively. As the front surface power increases the RMS SD in the back focal plane increase rapidly. When the refraction index increases, the RMS SD in the back focal plane decrease and the variation of RMS SD in the back focal plane decreases as the front surface power increases. When the center thickness of spectacle lens increases, the RMS SD in the back focal plane is constant and the edge thickness of that increases. We know from these results that the image in the back focal plane of a spherical spectacle lens improves as the front surface power increases and the refraction index decreases.

  • PDF

The Influence of the Variation of Conic Coefficient of the Front Surface on RMS Spot Diameter (전면의 conic 계수 변화가 착락원 크기에 미치는 영향)

  • Park, Seong-Jong;Ju, Seok-Hee;Sim, Sang-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.77-83
    • /
    • 2003
  • To investigate the influence of the variation of conic coefficient of the front surface on the RMS SD(Root Mean Square Spot Diameter) in a back focal plane, we use programs which are Cove V and LOSA 2.0. We consider a spectacle lens with back vertex power of -4.00D, diameter of 70 mm, the front surface powers which are 2.00D, 4.00D, 6.00D, and 8.00D, and the indices which are $n_d$=1.498, 1.523, 1.586, and 1.660, respectively. The RMS SD in the back focal plane and the thickness of an aspherical tens having the optimized conic constant are smaller than those of a spherical lens. The RMS SD in the back focal plane decreases as the front surface power decreases. From these results, we determine the optimized conic constant to improve the optical image quality and decrease RMS SD in the back focal plane.

  • PDF

The hardware design of Automatic Refractometer-Keratometer (자동 시각 굴절력-곡률계의 전자 부문 하드웨어 설계)

  • 박춘자;유강민;유대상;박종원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.49-51
    • /
    • 2001
  • 현재 국내의 시각 관련 전문가들이 일반적으로 사용하는 자동 시각 굴절력-곡률계(Auto Ref-Keratometer)는 대부분 일본 제품들을 포함하는 외국산들이다. 최근 국내에서도 일부 기업에서 시각 측정기 부문에서의 개발을 행하고 있으나 아직 외국 제품들에는 정확도, 성능 등에서 크게 미흡한 수준을 보이고 있다 이에 좀 더 개선된 성능의 광학 부문, 소프트웨어 부문, 전자 하드웨어 부문등이 요구되고 있다. 이에 본 연구에서는 하드웨어의 변경 없이 전자 부문 소프트웨어의 다양한 변경을 가할 수 있도록 해 주어 개발 기간을 크게 줄일 수 있고 고객 데이터베이스 구축 등의 응용 확장도 가능하도록 범용성을 갖추 자동 시각 굴절력 곡률계의 전자 부문 하드웨어를 설계하였다. 본 전자 부문 하드웨어 시스템은 동시 개발 중인 광학 부문, 전자 부문 소프트웨어와 연동되어 외국 제품에 비교시 정확도와 성능면에서 근소하나마 향상된 결과를 낼 수 있게 하였을 뿐 아니라 향후 발전 가능성도 크게 향상시킬 수 있었다.

  • PDF

An Effective Organization Method for Hardware in Automatic Refracto-Keratometer (자동 시각 굴절력 곡률계 전자 부문에서의 효과적인 하드웨어 구성 방안)

  • Ryu, Gang-Min;Seong, Won;Park, Jong-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.523-526
    • /
    • 2002
  • 최근 시각 관련 측정기 개발에 대한 관심이 높아지고 있다. 현재 국내의 시각 관련 전문가들이 일반적으로 사용하는 자동 시각 굴절력-곡률계(AutoRefracto-Keratometer)는 대부분 일본 제품들을 포함하는 외국산들이다. 최근 국내에서도 일부 기업에서 시각 측정기 부문에서의 개발을 행하고 있으나 아직 외국 제품들에는 정확도, 성능 등에서 크게 미흡한 수준을 보이고 있다. 이에 좀 더 개선된 성능의 광학 부문, 소프트웨어 부문, 전자 하드웨어 부문 등이 요구되고 있다. 이에 본 연구에서는 하드웨어의 변경 없이 전자 부문 소프트웨어의 다양한 변경을 가할 수 있도록 해 주어 개발 기간을 크게 줄일 수 있고 고객 데이터베이스 구축 등의 응용 확장도 가능하도록 범용성을 갖춘 자동 시각 굴절력 곡률계의 전자 부문 하드웨어를 설계하였다. 본 전자 부문 하드웨어 시스템은 동시 개발 중인 광학 부문, 전자 부문 소프트웨어와 연동되어 외국 제품에 비교시 정확도와 성능면에서 향상된 결과를 낼 수 있게 하였을 뿐 아니라 향후 발전 가능성도 크게 향상시킬 수 있었다.

  • PDF

Changes of Refractive Errors Caused by Corneal Shape and Pupil Size (각막지형과 동공크기에 의한 굴절교정값의 변화)

  • Noh, Yeon Soo;Kim, Sang-Yeob;Moon, Byeong-Yeon;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.383-387
    • /
    • 2014
  • Purpose: To investigate the effect of corneal unique shape to changes of refractive full corrections when pupil size changes. Methods: Subjective refraction for monocular full correction was performed to 30 subjects ($23.33{\pm}1.78$ of age, 60 eyes) in two room conditions, 760 lx and 2 lx, respectively. Pupillary diameter was measured in two conditions and the change pattern was analyzed using a peak data of corneal topography. Results: Pupillary diameter was 3.74~4.00 mm in 760 lx and 5.52~5.90 mm in 2 lx. By comparison with refractive data in 760 lx, those data in 2 lx was changed as follows: more (-) spherical power of 17 eyes (28.3%), more (+) spherical power of 10 eyes (17.7%), more (-) cylinderical power of 17 eyes (28.8%), less (-) cylinderical power of 9 eyes (15.3%), and astigmatic axis rotation of 36 eyes (62.1%). From peak data of corneal topography, the changing pattern of two principal meridians was classified into 4 types. Conclusions: Expansion of the corneal refractive surface accompanied with pupillary dilation may be a main factor that effects the changing a values of subjective refraction because of unique corneal shape. Therefore, subjective refraction should be performed under the nearest lighting condition to a main living environment.

Development of Free-form PALs for Correcting Wavefront Refraction (파면굴절력 교정을 위한 자유형상 누진가입도렌즈 개발)

  • Baarg, Saang-Bai;Jeong, Mee-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.50-59
    • /
    • 2010
  • In this paper, two kind of free-form progressive addition lenses (PALs) were designed with Zernike polynomial surface and anatomically accurate finite presbyopic schematic eyes which have aspheric cornea, aspheric GRIN crystalline lens, aspheric retina, and Gaussian apodization factor. Geometrical and diffraction MTFs were used for the optimization process in sequence. 5th orders of Zernike polynomials were used for the evaluation of progression zones of the two examples. The target MTF was set as 0.22 at 100 lp/mm which satisfies the standard visual resolution. These examples were fabricated with a CNC diamond turning machine controlled by slow tool servo (STS). After polishing process, the wavefront aberrations were measured with a laser interferometer on the ten test points across the progression zones and then compared with three current commercially available PALs on the optical performance. Astigmatic aberrations of the examples are very lower than the three selected PALs and have more increased stabilized progressive intermediate zones and near zones. It is expected to give better clear and comfortable distance, intermediate and near visions than other conventional PALs and to improve the adaptability of presbyopic patients to PALs.

A method to extract the aspherical surface equation from the unknown ophthalmic lens (형상 분석에 의한 안경렌즈의 비구면 계수 추출 방법)

  • 이호철;이남영;김건희;송창규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.430-433
    • /
    • 2004
  • The ophthalmic lens manufacturing processes need to extract the aspherical surface equation from the unknown surface since its real profile can be adjusted by the process variables to make the ideal curve without the optical aberration. This paper presents a procedure to get the aspherical surface equation of an aspherical ophthalmic lens. Aspherical form generally consists of the Schulz formula to describe its profile. Therefore, the base curvature, conic constant, and high-order polynomial coefficient should be set to the original design equation. To find an estimated aspherical profile, firstly lens profile is measured by a contact profiler, which has a sub-micrometer measurement resolution. A mathematical tool is based on the minimization of the error function to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the refractive power measurement is compared with the curvature distribution on the estimated aspherical surface equation

  • PDF

Estimation Method of the Best-Approximated Form Factor Using the Profile Measurement of the Aspherical Ophthalmic Lens (단면 형상 측정을 이용한 비구면 안경 렌즈의 최적 근사화된 설계 계수의 추정 방법)

  • Lee Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.55-62
    • /
    • 2005
  • This paper presents mainly a procedure to get the mathematical form of the manufactured aspherical lens. Generally Schulz formula describes the aspherical lens profile. Therefore, the base curvature, conic constant. and high-order polynomial coefficient should be set to get the approximated design equation. To find the best-approximated aspherical form, lens profile is measured by a commercial stylus profiler, which has a sub-micrometer measurement resolution. The optimization tool is based on the minimization of the root mean square of error sum to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the lens refractive power measurement shows the experimental consistency with the curvature distribution of the best-approximated aspherical surface equation

Analysis and Design of an Accommodation-Dependent Eye Model Based on Navarro Model (Navarro 모형안에 기반을 둔 조절을 고려한 모형안의 설계 및 분석)

  • Kang, Eun Kyoung;Park, Sung Chan;Kim, Jin Joo;Hwangbo, Chang Kwon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.235-240
    • /
    • 2010
  • Purpose: In this study, we proposed a simple accommodation-dependent crystalline lens with a constant volume and homogeneous refractive index. Methods: We proposed a human crystalline lens with two aspheric surfaces. Two surfaces intersect in two points and straight line between two points was equator(2b). It assumed that the derivative in axial direction was zero at the equator and the radial derivative was zero at the vertex. Proposed human crystalline lens was divided by the equator into the anterior and posterior parts. It was assume that the volume of each part and refractive index of the human crystalline lens were constant during accommodation. Results: For the changes during accommodation, geometrical parameters were determined by different objective distances. Considering the constant volume of each part with the small decrement of the equator, we obtained the paraxial parameters, such as the anterior and posterior vertex radius of curvature and lens thickness. Compared with the experimental data published in the literature, calculated values using simple approximation showed similar change per accommodative stimulus. Conclusions: These results showed that proposed simple approximation using assumption of constant volume and refractive index of the human crystalline lens made it possible to predict changes of geometrical parameters during accommodation.