• Title/Summary/Keyword: 메탈터치

Search Result 8, Processing Time 0.036 seconds

A Study on the Behavior of Metal Touch Connection subject to Connection Types (이음방식 및 틈의 위치에 따른 메탈터치 이음부의 거동에 관한 연구)

  • Hong, Kap Pyo;Kim, Seok Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.661-669
    • /
    • 2004
  • In the steel structure of high-rise buildings, a connection analysisand a column design have been made after welding and bolting suitable gaps. Each country, however, has different codes, and such differences are very big. American steel has been designed according to a code that all axial loads can be carried from the upper parts to the lower parts as determined by the designer, but Korean and Japanese steel have been designed by 1/4 of the standard of all axial loads. In this paper, a metal touch experiment was done as an intermediation parameter with a connecting location and a connecting method for economic and constructive efficiency. Every specimen is tested by a low-to-high displacement control to grasp ultimate strength, displacement, the connection's lateral deflection, and stress. The results of the test were compared and analyzed.

A Study on the Behavior of stress path subject to the gap size of metal touch connection (메탈터치 이음부의 틈의 크기에 따른 응력전달 거동에 대한 연구)

  • Hong, Kappyo;Kim, Seok Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.599-607
    • /
    • 2004
  • As buildings become more high-rise and lightweight in recent years, steel has been utilized more frequently. Based on the American AISC standard, all axial loads could be carried through a bearing load in a column splice, but according to Korean codes, the bearing load has constrained the stress that could be carried by only 25% of all axial loads. Thus, new column splice methods that use metal touch have been examined. In this study, the stress path mechanism, as an intermediation parameter in the gap's magnitude, must be determined. Similarly, the behavioral aspect of the metal touch connection must be sought after comparing and analyzing the results of the test.

A Experimental Study on the Structural Performance of Column Spliceswith Metal Touch Subjected to Axial Force and Bending Moment (압축력과 휨모멘트를 받는 메탈 터치된 기둥 이음부의 구조성능에 대한 실험적 연구)

  • Hong, Kap Pyo;Kim, Seok Koo;Lee, Joong Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.633-644
    • /
    • 2008
  • The structural framework design uses high-strength bolts and welding in column splices. However, for the column under high compression, the number of the required high-strength bolts can be excessive and the increase of welding results in difficulty of quality inspection, the transformation of the structural steels, and the increase of erection time. According to the AISC criteria, when columns have bearing plates, or they are finished to bear at splices, there shall be sufficient connections to hold all parts securely in place. The Korean standard sets the maximum 25% of the load as criteria. Using direct contact makes it possible to transfer all compressive force through it. The objective of this study is to examine the generally applied stress path mechanism of welded or bolted columns and to verify the bending moment and compression transfer mechanism of the column splice according to metal touch precision. For this study,22 specimens of various geometric shapes were constructed according to the change in the variables for each column splice type, which includes the splice method, gap width, gap axis, presence or absence of splice material, and connector type. The results show that the application of each splice can be improved through the examination of the stress path mechanism upon metal contact. Moreover, the revision of the relative local code on direct contact needs to be reviewed properly for the economics and efficiency of the splices.

롤투롤 시스템을 적용한 메탈 메쉬 전극 소재의 특성 향상 연구

  • Byeon, Eun-Yeon;Choe, Du-Ho;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.133.2-133.2
    • /
    • 2016
  • 차세대 디스플레이로 유연하고 투명한 기능들이 요구되면서 Indium Tin Oxide(ITO)를 대체하기 위한 투명전극 개발 연구가 많이 수행되고 있다. ITO는 높은 투과도와 낮은 저항으로 현재 가장 많이 활용되고 있는 투명전극 소재이지만 유연성이 떨어져 유연 터치 패널 소재로 활용하기 어렵다. 이러한 문제 해결을 위해 ITO 대체 물질로 CNT, Graphene, Metal mesh, Ag nano wire, 전도성 고분자 등의 차세대 투명 전극 소재가 대두되고 있다. 본 연구에서는 메탈 메쉬 전극 소재로 사용하기 위해 Cu 박막 증착 시 플라즈마 표면처리를 통해 밀착력 및 저항을 개선하였다. Cu 금속 박막의 양산화를 위한 공정으로 자체 제작한 Linear Ion Source(LIS)가 부착된 roll to roll 시스템을 적용하여 플라즈마 전처리 공정 및 Ni buffer layer 도입 이후 Cu 박막을 형성하였다. 그 결과 PET 기판과 Cu 박막 사이의 밀착력을 0 degree에서 5 degree까지 향상시킬 수 있었고, 플라즈마 표면처리를 시행함으로써 저항 또한 감소되는 결과를 얻을 수 있었다. 본 연구를 통해서 폴리머 기판 소재에 in-situ로 표면처리 및 Cu 금속 박막을 증착함으로써 금속 박막의 밀착력 및 전기적 특성이 향상되는 공정 기술을 개발하였다.

  • PDF

Corrosion Comparison in Pipeline applied to Cathodic Protection and Analysis of Economic Efficiency (전기방식 적용여부에 따른 관로 부식상태 비교 및 경제성 검토)

  • Ko, Young-Hoan;Han, Ho-Yeon;Joung, Yoo-Jin;Lee, En-Chun;Lee, In-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.390-393
    • /
    • 2007
  • 매설관로상의 전기방식에 대한 경제성을 비교하는 자료는 미국 루지에나주에서 실제로 방식/비방식관로를 구성하고 15년간의 대이타를 기준으로 분석한 내용이 있으나, 실제 우리나라의 대부분의 수도관은 도심지지하에 가스관, 지중시설물 등 각종 설비와 함께 매설되어 메탈터치 및 간섭에 의한 집중부식구간이 우려되는 구간이 많을뿐 아니라 이종 관류에 의한 부식구간도 많아 외국의 데이터를 그대로 적용할수 없어 국내의 공신력있는 실험 데이터를 확보하여 구체적인 경제성을 검증하여 투자의 적정성을 확보하는데 이 연구의 목적이 있음

  • PDF

Design of Moir${\acute{e}}$- and Starburst-Free Metal Meshes for Touch Screen Panels (모아레, 스타버스트 현상이 없는 터치스크린 패널용 메탈 메쉬 설계)

  • Shin, Dong-Kyun;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • Using a ray tracing simulation, we have investigated the moir${\acute{e}}$ and starburst phenomena of touch screen panels (TSPs) based on opaque metallic grids (square, hexagonal, and random grids). It is demonstrated that employing a random metal mesh is the most effective way to suppress the moir${\acute{e}}$ and starburst phenomena at the same time. At high crossing angles between metal mesh of TSPs and black matrix (BM) of displays, however, a random metal mesh brings in stronger moir${\acute{e}}$ phenomenon than a square metal mesh due to point defects. Though the square metal mesh suppresses the moir${\acute{e}}$ effect substantially at high crossing angles, yet it results in the strongest starburst patterns. We have also provided the simulation scheme that can capture the moir${\acute{e}}$ and starburst patterns observed experimentally and useful design guidelines for metal grids.

Development of Inspection System for Transparent Pattern of the Electromagnetic Resonance Pen (전자펜 입력용 투명패턴 검사장치 개발)

  • Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.640-645
    • /
    • 2020
  • To produce an input device stably using the transparent electromagnetic pattern of an electromagnetic induction method, pattern inspection is required in advance in the production process. Various methods of inspecting the capacitive pattern for hand-touch have been proposed, but it is difficult to find the related technical data for the pattern inspection method of the transparent electromagnetic induction method. In this study, to develop an inspection system for a fused electromagnetic resonance pen sensor with a copper-etched metal mesh pattern, an inspection algorithm and method for measuring the antenna impedance inside the sensor was proposed by measuring only the exposed FPCB connector. The proposed method was configured as a control board consisting of a microprocessor that forms a loop between specific channels according to the command of a computer, a computer-controlled by the Windows program, an LCR meter measuring the impedance between specific channels, and transmitting the measurement results back to the computer. An evaluation of the proposed system and measurements of nine specimens showed that it could detect the defects of the sensor used in the actual product.

Formation of Metal Mesh Electrodes via Laser Plasmonic Annealing of Metal Nanoparticles for Application in Flexible Touch Sensors (금속 나노 파티클의 레이저 플라즈모닉 어닐링을 통한 메탈메쉬 전극 형성과 이를 활용한 유연 터치 센서)

  • Seongmin Jeong;Yun Sik Hwang;Yu Mi Woo;Yong Jun Cho;Chan Hyeok Kim;Min Gi An;Ho Seok Seo;Chan Hyeon Yang;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.223-229
    • /
    • 2024
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) holds significant promise as a technology for producing flexible conducting electrodes. This method offers immediate, straightforward, and scalable manufacturing approaches, eliminating the need for expensive facilities and intricate processes. Nevertheless, the metal NPs come at a high cost due to the intricate synthesis procedures required to ensure long-term reliability in terms of chemical stability and the prevention of NP aggregation. Herein, we induced the self-generation of metal nanoparticles from Ag organometallic ink, and fabricated highly conductive electrodes on flexible substrates through laser-assisted plasmonic annealing. To demonstrate the practicality of the fabricated flexible electrode, it was configured in a mesh pattern, realizing multi-touchable flexible touch screen panel.