• Title/Summary/Keyword: 메탄 열분해

Search Result 55, Processing Time 0.022 seconds

Thermal Degradation Characteristics of Carbon Tetrachloride in Excess Hydrogen Atmosphere (과잉수소 반응조건하에서 사염화탄소의 고온 분해반응 특성 연구)

  • Won, Yang-Soo;Jun, Kwan-Soo;Choi, Seong-Pil
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.569-577
    • /
    • 1996
  • pure compound chloromethanes; methyl chloride, methylene chloride, chloroform and The carbon tetrachloride were used as a model of chlorocarbon system with Cl/H ratio to investigate thermal stability and hydrodechlorination process of carbon tetrachloride under excess hydrogen atmosphere. The parent thermal stability on basis of temperature required for 99% destruction at 1 second no was evaluated as $875^{\circ}C$ for $CH_3Cl$, $780^{\circ}C$ for $CH_2Cl_2$, $675^{\circ}C$ for $CHCl_3$ and $635^{\circ}C$ for $CCl_4$. Chloroform was thermally less stable than $CCl_4$ at fairly low temperatures $(<570^{\circ}C).$ The lion of $CCl_4$ became more sensitive to increasing temperature, and $CCl_4$ was degraded CHCl3 at above $570^{\circ}C.$ The number and quantity of chlorinated products decreases with increasing temperature for the Product distribution of $CCl_4$ decomposition reaction system. Formation of non-chlorinated hydrocarbons such as $CH_4$, $C_2H_4$ and C_2H_6$ increased as the temperature rise and particularly small amount of methyl chloride was observed above $850^{\circ}C$ in $CC1_4$/$H_2$ reaction system. The less chlorinated products are more stable, with methyl chloride the most stable chlorocarbon in this reaction system.

  • PDF

The Status of Methane Hydrate Development (메탄하이드레이트 개발동향)

  • Kim, Young-In
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.71-84
    • /
    • 2013
  • Most gas hydrates (GH) occur in ocean sediments. Global GH reserves are estimated to be $10^{13}{\sim}20{\times}10^{15}m^3$, which is nearly 1,000 times the amount of current world energy consumption. Methane hydrate (MH) has the potential to be developed into future natural gas resources to replace traditional oil and gas resources, and thus MH production technologies such as depressurization, inhibitor injection, thermal stimulation, and $CO_2-CH_4$ substitution need to be further developed. MH production, which is expected to be in test production until 2014 in Korea, is focused on the development of GH production technologies for use in the commercial production of methane gas. This study compares MH production technology and its ability to meet the twin goals of being both effective and environmentally friendly while taking into consideration the complex phenomena of GH decomposition.

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions (열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성)

  • Kim, Yong-Je;Won, Yang-Soo
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.

Simulation and model validation of Biomass Fast Pyrolysis in a fluidized bed reactor using CFD (전산유체역학(CFD)을 이용한 유동층반응기 내부의 목질계 바이오매스 급속 열분해 모델 비교 및 검증)

  • Ju, Young Min;Euh, Seung Hee;Oh, Kwang cheol;Lee, Kang Yol;Lee, Beom Goo;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.200-210
    • /
    • 2015
  • The modeling for fast pyrolysis of biomass in fluidized bed reactor has been developed for accurate prediction of bio-oil and gas products and for yield improvement. The purpose of this study is to analyze and to compare the CFD(Computational Fluid Dynamics) simulation results with the experimental data from the CFD simulation results with the experimental data from the reference(Mellin et al., 2014) for gas products generated during fast pyrolysis of biomass in fluidized bed reactor. CFD(ANSYS FLUENT v.15.0) was used for the simulation. Complex pyrolysis reaction scheme of biomass subcomponents was applied for the simulation of pyrolysis reaction. This pyrolysis reaction scheme was included reaction of cellulose, hemicellulose, lignin in detail, gas products obtained from pyrolysis were mainly $CO_2$, CO, $CH_4$, $H_2$, $C_2H_4$. The deviation between the simulation results from this study and experimental data from the reference was calculated about 3.7%p, 4.6%p, 3.9%p for $CH_4$, $H_2$, $C_2H_4$ respectively, whereas 9.6%p and 6.7%p for $CO_2$ and CO which are relatively high. Through this study, it is possible to predict gas products accurately by using CFD simulation approach. Moreover, this modeling approach should be developed to predict fluidized bed reactor performance and other gas product yields.

Treatment Technology for Solid Waste (페기물 처리기술 개관)

  • 신항식
    • Journal of the KSME
    • /
    • v.34 no.8
    • /
    • pp.587-604
    • /
    • 1994
  • 이 글에서는 폐기물의 분류 및 정의, 수거.운반 기술, 전처리 기술에서부터 중간처리기술로서 소각 및 기타 퇴비화, 메탄발효, 열분해, 고체연료, 사료화, 알콜발효, 식용작물재배 기술 그리고 최종처분기술로서 매립기술 및 해양티기 등 폐기물 처리기술의 전반을 포괄적으로 살펴보았다. 폐기물은 마치 인간의 삶을 대변이나 하듯이 복잡다다한 성분을 포함하고 있어서 중간처리 및 최종처분기술의 개발에만 노력을 기울일 수는 없으며, 정확한 분류와 수거 및 운반 체계의 최 적화, 그리고 수거된 폐기물의 선별을 포함하는 전처리 조작등이 폐기물 구성성분의 특성에 맞는 처리기술과 함께 유기적으로 연계되도록 해야 하며, 이를 위한 총체적 폐기물관리시스템의 토 착화는 아무리 강조해도 지나치지 않는다. 아울러 폐기물 처리의 공학적인 측면이외에도 국민의 절대적인 협조와 정책적인 뒷받침이 선행될 때만이 이 땅에서 폐기물처리로 인한 문제가 사라질 수 있을 것이며, 환경기술을 또다른 국제무역장벽의 하나로 구체화하려는 그린라운드(G.R.; green round)에 적극적으로 대웅하여 폐기물처리기술을 포함한 여타 환경기술을 세계화하고 수출하는 계기도 마련되어지리라 판단된다.

  • PDF

Pyrolysis of Waste Tire in a Fluidized Bed (유동층을 이용한 폐타이어의 열분해)

  • 김정래;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.92-95
    • /
    • 1993
  • 실험실 규모의 유동층 반응기(0.8 m H $\times$ 0.08 m I.D.) 에서 반응온도(700 -80$0^{\circ}C$), 유동화속도(1.5 - 3 Umf)의 영향에 따른 생성물의 수율, 생성가스의 조성, 생성가스의 발열량의 변화를 질소 분위기하에서 조사하였다. 반응온도를 700 에서 850 $^{\circ}C$로 증가시킬 때 촤의 수율은 36% 정도로 온도에 따라 큰 차이를 보이지 않은 반면 가스의 수율은 온도가 증가함에 따라 22 %에서 800 $^{\circ}C$까지 30%가량 증가하다 그 이상의 온도에서는 증가하지 않았다. 또한 수소와 메탄은 온도가 증가함에 따라 그 생성량이 증가하는 반면 에탄과 프로펜은 감소하였으며 단위 부피당 가스의 발열량은 감소하였다.

  • PDF

반응가스 주입용 간극형 노즐을 가진 비이송식 직류 열플라즈마 토치를 이용한 메탄/이산화탄소 개질반응

  • Seo, Jun-Ho;Lee, Mi-Yeon;Kim, Min-Ho;Nam, Jun-Seok;Kim, Dong-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.322-322
    • /
    • 2013
  • $CO_2$$CH_4$와 열 및 전기화학적인 반응을 통해 고농도의 CO 및 $H_2$로 구성된 합성가스로 효율적으로 전환시키기 위해, 반응가스 주입용 간극형 노즐을 가진 비이송식 직류 열플라즈마 토치 시스템을 설계, 제작하고 다양한 조건에서 이 두 가스의 개질 실험을 수행하였다. 설계 제작된 간극형 노즐과 리액터 내 고온 반응 영역을 활용한 $CO_2$$CH_4$ 반응가스의 효율적인 처리를 통하여, 최고 70% 이상의 $CO_2$$CH_4$의 전환율과 최고 80% 이상의 CO 및 $H_2$선택도를 달성할 수 있음을 확인하였다. 또한, 상기 조건의 경우, 플라즈마 입력 전력 10.6 kW 대비 49 lpm 의 반응가스 처리량을 통하여 얻은 것으로 최고 2.5 mmol/kJ 이상의 Specific Energy Requirement (SER) 조건도 만족할 수 있음을 보였다. 특히, 제안된 막대 음극-반응 가스 주입구를 가진 양극 노즐 플라즈마 토치의 경우, $CH_4$ 반응가스를 음극에 직접 닿지 않도록 간극을 통해 주입하게 함으로써, 반응 가스 분해에 의한 음극 등 전극 부식을 최소화하면서도 고에너지 전자가 풍부한 아크 컬럼에 의해 $CO_2$$CH_4$의 전환 반응을 효율적으로 일으킬 수 있어 효율적인 $CO_2$$CH_4$ 개질을 위한 열플라즈마 토치 시스템의 개발이 기대된다.

  • PDF

Thermal, Mechanical, and Electrical Properties of Fluorine-Containing Epoxy Resins (불소함유 에폭시 수지의 열적, 기계적 및 전기적 특성)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.183-188
    • /
    • 2003
  • The dielectric constants of fluorine-containing epoxy resins, 2-diglycidylether of benzotrifluoride(FER)/4,4'-diamino-diphenyl methane (DDM) and diglycidylether of bisphenol-A (DGEBA)/DDM systems were evaluated by dielectric spectrometer. Glass transition temperature and thermal stability factors, including initial decomposed temperature, temperatures of maximum rate of degradation, and decomposition activation energy of the cured specimens were investigated by dynamic mechanical analysis and thermogravimetric analysis. For the mechanical properties of the casting specimens, the fracture toughness, flexural, and impact tests were performed, and their fractured surfaces were examined by scanning electron microscope. The dielectric constant of FER/DDM system was lower than that of commercial DGEBA/DDM system, and the mechanical properties of the cured specimens showed higher values than those of DGEBA/DDM system. This was probably due to the introduction of trifluoromethyl (CF$_3$) group into the side chain of the epoxy resins, resulting in improving the electric and mechanical properties of the epoxy cure system studied.

Characteristics of Hydrogen and Carbon Production in Tubluar Reactor by Thermal Decomposition of Methane (Methane의 고온열분해에 의한 Tubluar reactor에서의 수소 및 탄소 생성 특성)

  • Lee, Byung Gwon;Lim, Jong Sung;Choi, Dae Ki;Park, Jeong Kun;Lee, Young Whan;Baek, Young Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • This work was focused on the thermal decomposition of methane into hydrogen and carbon black without emitting carbon dioxide. Extensive experimental investigation on the thermal decomposition of methane has been carried out using a continuous flow reaction system with tubular reactor. The experiments were conducted at the atmospheric pressure condition in the wide range of temperature ($950-1150^{\circ}C$) and flow rate (250 - 1500 ml/min) in order to study their dependency on hydrogen yield. During the experiments the carbon black was successfully recovered as an useful product. Undesirable pyrocarbon was also formed as solid film, which was deposited on the inside surface of tubular reactor. The film of pyrocarbon in the reactor wall became thicker and thicker, finally blocking the reactor. The design of an efficient reactor which can effectively suppress the formation of pyrocarbon was thought to be one of the most important subjects in the thermal cracking of methane.

Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide (온실가스 아산화질소(N2O) 저감기술 및 CDM 사업의 현황과 전망)

  • Chang, Kil Sang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • With the effectuation of Kyoto Protocol on the United Nations Framework Convention on the Climate Change, the emission reduction of greenhouse gases became an urgent issue and has been competitively secured among countries as the form of certificates through clean development mechanism (CDM) or joint implementation (JI). Nitrous oxide ($N_2O$) is one of the major greenhouse gases along with carbon dioxide ($CO_2$) and methane ($CH_4$) having warming potential 310 times that of carbon dioxide and chemically very stable in the atmosphere to give a life time of more than 120 years so that it reaches to the stratosphere to act as an ozone depleting substance. $N_2O$ hardly decomposes and thus, besides to the adoption of thermal decomposition at high temperature, selective catalytic reduction methods are usually used at temperatures over $400^{\circ}C$ in which the presence of NOx acts as a major impeding material in the decomposition process. In this article, the sources of various $N_2O$ generation, catalytic reduction processes and the status and trends of emission trade with CDM projects for greenhouse gas reduction are summarized and discussed on a condensed basis.