• Title/Summary/Keyword: 메탄 배출

Search Result 238, Processing Time 0.024 seconds

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Seasonal Change of Rice-mediated Methane Emission from a Rice Paddy under Different Water Management and Organic Amendments (물 관리와 유기물 시용이 다른 논에서 벼 식물체를 통한 메탄 배출의 계절변화)

  • Shin, Yong-Kwang;Lee, Yang-Soo;Ahn, Jong-Woong;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.41-49
    • /
    • 2003
  • Methane emission was measured in a rice paddy under different water management and organic amendments. Methane emission from planted chambers and unplanted chambers was monitored to evaluate the rice-mediated methane emission. In flooding methane emission from planted chambers with NPK, NPK(+P), was $0.174g\;CH_4\;m^{-2}\;d^{-1}$ while that from unplanted chambers with NPK, NPK(-P), was $0.046g\;CH_4\;m^{-2}\;d^{-1}$ Methane emission from planted chambers with rice straw compost amendment, RSC(+P), was $0.214g\;CH_4\;m^{-2}\;d^{-1}$, while that from unplanted chambers with rice straw compost amendment, RSC(-P), was $0.076g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from planted chambers with rice straw amendment in Fehruary, RS2(+P), was $0.328g\;CH_4\;m^{-2}\;d^{-1}$, while that from unplanted chambers with rice straw amendment in February, RS2(-P), was $0.1g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from planted chambers with rice straw amendment in May, RS5(+P), was $0.414g\;CH_4\;m^{-2}\;d^{-1}$, while that from unplanted chamhers with rice straw amendment in May, RS5(-P), was $0.187g\;CH_4\;m^{-2}\;d^{-1}$. In intermittent irrigation methane emission from NPK(+P) was $0.115g\;CH_4\;m^{-2}\;d^{-1}$, while that from NPK(-P) was $0.041g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from RSC(+P) was $0.137g\;CH_4\;m^{-2}\;d^{-1}$, while that from RSC(-P) was $0.06g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from RS2(+P) was $0.204g\;CH_4\;m^{-2}\;d^{-1}$, while that from RS2(-P) was $0.09g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from RS5(+P) was $0.273g\;CH_4\;m^{-2}\;d^{-1}$, while that from RS5(-P) was $0.13g\;CH_4\;m^{-2}\;d^{-1}$. Methane transport via rice plant under flooding for NPK plot, RSC plot, RS2 plot and RS5 plot was 73.6%, 64.5%, 69.5% and 54.8%, respectively, and mean was 65.6%. Methane transport via rice plants under intermittent irrigation for NPK plot, RSC plot, RS2 plot and RS5 plot was 64.3%, 59.2%, 55.9% and 52.4%, respectively, and mean was 58.0%.

Measures to Secure Safety according to Gas pipe Hydrogen Mixing(Carbon Neutral) (가스배관 수소혼입(탄소중립)에 따른 안전확보 방안)

  • Kwak, Che-Sik;Sin, Dong-Il
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.290-291
    • /
    • 2022
  • 본 논문에서는 우리나라 2030년 국가 온실가스 감축목표(NDC*, 291백만톤 감축)달성 및 2050년 탄소중립 목표 달성을 위해 필연적으로 수반되는 천연가스 내 수소 혼입에 따른 안전성확보 방안과 수소혼입에 따른 국민 불안감 해소 및 수용성 제고를 위한 대안을 제시하고, 해외 사례를 연구 하였다. 탄소중립은 온실가스(이산화탄소 등)의 배출량을 최대한 줄이고, 남은 온실가스를 흡수, 제거해서 실질적인 배출량이 "0"이 되는 것을 의미하고, 수소혼입은 도시가스의 주성분인 메탄 연소시 발생하는 CO2를 최소화하기 위해 수소(H2)를 도시가스에 일정비율 혼합하는 것을 말한다. 본 연구에서는 수소 혼입 시 우려되는 수소취성 및 배관내구성 문제와 수소 특성인 작은 입자로 인한 누출 위험성, 고층에서 메탄과 수소가 분리되는 현상 등에 따른 문제를 도출하고 이에 대한 안전관리 방안도 함께 제시하였다. 또한, 도시가스 배관에 수소 혼입시 천연가스 대체를 통한 온실가스 감축 및 기존 배관망 사용을 통한 경제성 분석결과와 국가 온실가스 감축에 어느 정도 기영할 수 있는지도 함께 기술하였다.

  • PDF

Comparison of Methane Production of Holstein Steers Fed Forage and Concentrates Separately or As a TMR (TMR과 조사료 농후사료 분리급여 방식의 홀스타인 거세우 메탄배출량 비교)

  • Lee, Yoonseok;Bharanidharana, Rajaraman;Park, Jae-Hyun;Jang, Sun Sik;Yeo, Joon Mo;Kim, Wan Young;Kim, Kyoung Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.2
    • /
    • pp.104-108
    • /
    • 2016
  • The objective of this study was to determine how feeding forage and concentrate separately (SF) or as a total mixed ration (TMR) affects enteric methane production of cattle. Six Holstein steers ($203{\pm}22.5kg$) were used in a $2{\times}3$ changeover design experiment. Experimental diets (TMR and SF) consisted of compound feed, timothy hay and soybean curd residue in a ratio of 40:48:12, respectively, and diets were fed at 10% of metabolic body weight, on an as-fed basis. There were no differences in dry matter intake and enteric methane production (g/d) between SF and TMR but the methane conversion rate (methane energy/GE intake) of TMR was significantly higher (p=0.05) than that of SF. The mean methane emission factor (kg/head/year) and conversion rate of the two treatments were 21.4 and 0.05, respectively. There was a strong relationship between metabolic body weight and enteric methane production (p<0.001). At the present time, further studies may be necessary in order to establish the effects of TMR and SF on enteric methane production.

Recycle of Carbon Dioxide Using Dry Reforming of Methane (메탄의 건식 개질을 이용한 이산화탄소의 재활용)

  • Kim, Jeongmook;Ryu, Jun-hyung;Lee, In-Beum;Lee, Jae Sung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Considerable attention has been given to developing methodologies to reduce the emission of carbon dioxide from industry to meet strengthened environmental regulations. In this article, recent research trends on dry reforming of methane as an alternative method to reduce $CO_2$ emission from large scale industrial processes are addressed. To efficiently provide the energy needed in this strong endothermic reaction without additional $CO_2$ emission, it seems to be desirable to adopt autothermal reaction mode. The produced synthesis gas could be used as a reducing gas, or a feedstock for synthesis of chemicals and fuels.

Methane Mitigation Technology Using Methanotrophs: A Review (Methanotrophs을 이용한 메탄 저감 기술 최신 동향)

  • Cho, Kyung-Suk;Jung, Hyekyeng
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.185-199
    • /
    • 2017
  • Methane, which is emitted from natural and anthropogenic sources, is a representative greenhouse gas for global warming. Methanotrophs are widespread in the environment and play an important role in the biological oxidation of methane via methane monooxygenases (MMOs), key enzymes for methane oxidation with broad substrate specificity. Methanotrophs have attracted attention as multifunctional bacteria with promising applications in biological methane mitigation technology and environmental bioremediation. In this review, we have summarized current knowledge regarding the biodiversity of methanotrophs, catalytic properties of MMOs, and high-cell density cultivation technology. In addition, we have reviewed the recent advances in biological methane mitigation technologies using methanotrophs in field-scale systems as well as in lab-scale bioreactors. We have also surveyed information on the dynamics of the methanotrophic community in biological systems and discussed the various challenges pertaining to methanotroph-related biotechnological innovation, such as identification of suitable methanotrophic strains with better and/or novel metabolic activity, development of high-cell density mass cultivation technology, and the microbial consortium (methanotrophs and non-methanotrophs consortium) design and control technology.

Analysis of surface emission and oxidation rate of landfill gas by major discharge path of landfill (매립장 주요 배출경로별 매립가스 표면발산량 및 산화율 분석)

  • Seung-Kyu Chun;Jong-Keun Park;Myoung-Gwan Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.425-434
    • /
    • 2023
  • An analysis was conducted on landfill gas generation and surface emission by major routes for three landfill sites of S Landfill in the metropolitan area. LS1, which had a total landfill gas generation ratio of 10.9%, accounted for 49.4% of the total surface emissions. The total surface emission of methane alone was 13.6 Nm3/min in the three landfill sites. Among them, the surface emission of methane at LS1, LS2, and LS3 was 8.4(61.7%), 4.0(29.4%), and 1.2 Nm3/min(8.9%), respectively. By emission path in the upper, slope, and dike, it was 7.3(53.2%), 6.4(46.7%), and 0.02 Nm3/min(0.1%). The dike section of the major surface emission areas showed the largest oxidation rate at 87.5%, followed by the upper at 72.3%, and the slope at 71.8%. Based on methane generation, LS1 had the largest surface emission contribution rate, with 61.7% of the total by S Landfill. By major emission path, the slope section of LS1 accounted for 41.7% of the total, the upper section of LS2 24.4%, and the upper section of LS1 20.0%, which accounted for 86.1% of the total methane surface emission of S Landfill. Therefore, it is concluded that intensive management will be necessary.

The Anaerobic Biodegradability and Methanogenic Toxicity of Pulping Wastewaters (펄프페수의 혐기성 생분해능 및 메탄 생성균의 독성에 관한 연구)

  • 박종안;허준무;장봉기
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.70-79
    • /
    • 1998
  • 본 실험의 목적은 다양한 펄프제조 조건과 여러 형태의 리그노 셀루로우스 성분이 펄프폐수의 혐기성 생분해에 미치는 영향을 규명하는 것이다. 실험에 사용된 폐수는 일반적으로 펄프 제조시에 발생되는 폐수를 대상으로 하였으며, 펄프제조 조건은 TMP공정과 소다 펄프공정을 적용하였다. 혐기성 생분해 가능성 시험 및 독성실험은 $35\pm 2\circ$C의 중온상태에서 입상슬러지를 식종물질로 사용한 회분식 반응조를 이용하였다. TMP공정의 배출되는 폐수는 산으로의 전환율이 총 COD기준으로 68-87%로 매우 높은 혐기성 생분해 가능성을 보였다. 그리고 TMP공정폐수는 일반적으로 제지폐수 처리시 독성농도라고 알려진 농도에서도 메탄생성균에 독성을 주지 않았고, 또한 COD 10g/l의 농도에서도 처리에 저해가 일어나지 않았다. 반면에, 알카리성 상태에서 준비된 펄프폐수의 경우는 생분해성이 매우 낮아서 대략 50%정도의 산전환율을 보였으며, 메탄생성균에 상당한 저해를 주었다. 메턴생성균의 활성도에 50%저해를 주는 농도는 2.1~5.4 gCOD/l였다. 알카리성 펄프폐수의 독성에 대한 추가 실험결과 펄프내 wood resin이 산이나 중성 pH부근에서는 잘 용해가 되지 않고 알카리성 상태에서 쉽게 용해되어 메탄생성균에 저해를 나타내는 것으로 밝혀졌다. 따라서 펄프제조시 나무성분이 알카리성분과 접촉할 경우 후속하는 혐기성 처리공정의 메탄생성균에 심각한 저해를 줄 수 있다.

  • PDF