• Title/Summary/Keyword: 메탄생산

Search Result 353, Processing Time 0.028 seconds

Greenhouse Gas Reduction Effect of Improvement of Existing Landfill Gas(LFG) Production by Using Food Waste Water (음폐수 이용 기존 매립지 가스 발생 향상에 따른 온실가스 감축효과)

  • Shin, Kyounga;Dong, Jongin;Park, Daewon;Kim, Jaehyung;Chang, Wonsoek
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.104-113
    • /
    • 2016
  • This study analyzes correlation between methane gas production and injection of food waste water to motivate to expand renewable energy as a way of GHG (Green House Gas) mitigation to achieve the national GHG target proposed for the climate agreement in Paris last year. Pretreatment of food waste water was processed with pH 6 at $35^{\circ}C$ and used the fixed-bed upflow type reactor with the porous media. As a result of operation of pilot-scaled bioreactor with food waste water, the methane gas production was 6 times higher than the methane gas production of control group with rain water. The average production of methane was $56{\ell}/day/m^3$ which is possible to produce $20m^3$ of methane in $1m^3$ of landfill. As a way of energy source, when it is applied to the landfill over $250,000m^3$, it is also able to achieve financial feasibility along with GHG reduction effect. GHG reductions of $250,000m^3$ scale landfill were assessed by registered CDM project and the annual amount of reductions was 40,000~50,000 $tCO_2e$.

Anaerobic Digestion Efficiency of Remainder from Bacterial Cellulose Production Process using Food Wastes (음식 폐기물을 이용한 박테리아 셀룰로오스 생산 공정 잔류물의 혐기성 소화효율)

  • Jin, Sheng-De;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • This study was performed to examine the availability of anaerobic digestion of the remainders caused by bacterial cellulose production process using food wastes. They maybe to be considered as others second pollution sources. Thus, this study was targeted to minimize content of organic material and to obtain more energy in those remnants using two-phase UASB reactor. The working volume of first hydrolysis fermentor was 35 L (total 55 L) and the second methane fermentor was 40 L (total 50 L). The organic loading rate of hydrolysis fermentor was 3 g-VS/L${\cdot}$day and 25,000 ppm of $COD_{cr}$ for methane fermentor. The hydraulic retention time was 18 days for hydrolysis reactor and 33 days for methane reactor. The hydrolysis reactor and methane reactor were performed at 35, 40$^{\circ}C$ respectively. For the efficient stable performance, the composition of organic wastes at each stage was as follow; Food waste with bacterial culture remnants (1 : 1), bacterial cellulose remnants, bacterial cellulose culture remnants with food wastes saccharified solids (1 : 1). When the anaerobic digestion was performed stably at each stage, the COD removal efficiency was 88, 90, 91 % respectively. At this time, methane production rate was 0.26, 0.34, $0.32m^3\;CH_4/kg-COD_{remove}$. As well as the values of anaerobic digestion at third stage were more higher than values of anaerobic digestion using food wastes. It is clearly to say that the food wastes zero-emission system constructed in our lab is more efficient way to treat and reclaim food wastes.

Chromophoric Structures of Alkali Lignin (알카리리그닌의 착색구조(着色構造)에 관(關)한 연구(硏究))

  • Yoon, Byung-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.1-30
    • /
    • 1981
  • To investigate the formation of the chromophoric structures taking place during the alkaline pulping vanillyl alcohol [${\alpha}-^{13}C$] guaiacylglycerol-${\beta}$-aryl ether [${\alpha}-^{13}C$ or ${\gamma}-^{13}C$] and phenylcoumarn [${\alpha}-^{13}C$] units as model lignins were treated with 1N sodium hydroxide at 165$^{\circ}C$ for 1.5-3 hours. From the chemical structures of the isolated products and $^{13}C$-NMR Spectra of the reaction mixtures, the main conclusion is as follows; 1) Condensation products of II-1-5 were identified from the reaction mixture of vanillyl alcohol treated with alkali and theses compounds afforded the quinonmethide structure(Fig. 3-7) by air oxidation. 2) Treatment of guaiacylglycerol-${\beta}$-aryl ether unit gave ${\varphi}$-aryl-${\beta}$-aroxy quinone structures (IV-15, IV-16), diguaiacyl-1, 4-penta-diene ${\beta}$, ${\beta}$'-diaroxyl distyrene methane unit, ${\beta}$-aroxy distyrene methane. These distyrene methanes of the compounds are transformed by air oxidation into the corresponding o-quinonemethide units (V-8, V-9). 3) On the treatment of phenylcoumaran, the stilbene derivative was formed in quantitative yield and dimerized(VI-11) in preference to oxidation to the corresponding extended quinone structures. The chromophoric structures taken place during the alkaline treatment of the model lignins are thought to be some important types in alkaline pulping on the basis of the reaction mechanism in this experiment.

  • PDF

Screening test of commercial catalysts for direct synthesis of Dimethyl ether from syngas produced using coal and waste (석탄 및 폐기물로부터 생산된 합성가스로부터 Dimethyl ether의 직접합성을 위한 상용촉매 스크린테스트)

  • Kim, Eun-Jin;Han, Gi-Bo;Park, No-Kuk;Ryu, Si-Ok;Lee, Tae-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.689-692
    • /
    • 2005
  • 2020년까지 전 세계 수송에너지의 수요가 현재의 2배까지 증가할 것으로 예상되면서 석유 자원의 안정적 공급이 어려워지기 이전에 이를 대체할 수 있는 에너지원 개발이 시급하다. 이러한 노력의 일환으로 최근 들어 대두되고 있는 가스화용융 기술은 석탄 폐기물 등으로부터 합성가스를 생산하는 고청정 고효율 기술이다. 여기에서 생산되는 합성가스는 천연가스를 대체하여 전기 및 화학원료를 생산하기 위한 원료로 이용 가능하다. 폐기물로부터 가스화용융기술을 통하여 생산되는 합성가스로부터 DME(dimethyl ether)를 생산할 수 있다. 가스화용융기술로부터 생산되는 합성가스는 자체의 일산화탄소와 수소의 조성비가 DME를 합성하는데 적당하다고 알려져 있다. DME는 에너지원의 다원화와 대기오염 물질의 저감, 지구온난화 대응 등과 아울러 제 4세대 수송 연료로 부각되고 있다. DME를 합성하는 방법은 합성가스로부터 메탄올의 합성 단계를 거친 후 DME를 합성하는 간접법과 단일단계의 반응에서 합성가스로부터 직접적으로 DME를 합성하는 직접법이 있다. 현재는 화학 평형적 측면 경제적 측면에서 이점을 가지고 있는 직접법에 관한 연구가 활발히 이루어지고 있다. DME 직접합성법에서는 메탄올 합성 촉매와 메탄올 탈수촉매의 물리적 혼합에 의한 혼성촉매가 주로 이용되고 있는 것으로 알려져 있다 본 연구에서는 일산화탄소와 수소로 이루어진 합성 가스로부터 직접 DME를 생산할 수 있는 직접 합성 공정에 적용 가능한 고효율 촉매 기술을 개발하기 위해 상용촉매의 스크린 테스트를 수행하였다. 상용촉매로는 sud-chemi사에서 메탄을 합성 촉매와 탈수촉매를 각각 구입하였으며, 이들 촉매를 원하는 조성비로 물리적으로 혼합한 다음 반응온도 ($250-290^{\circ}C$) 압력 (30-50 atm), $H_2$/CO 몰비 (0.5-2.0) 등의 다양한 반응조건 하에서 스크린 테스트를 수행하였다.대장조영영상을 얻을 수 있어 대장암의 위치에 관한 정보를 삼차원적으로 제공하므로 대장암의 성상을 정확히 알 수 있는데 도움을 주었다.요인은 없는 것으로 사료된다. 이 중 2예의 CT에서 선상 혹은망상형의 음영을 보였다. 결론: 유방암 환자의 방사선 치료 후 CT 소견은 방사선 치료의 방법에 따라 폐첨부 혹은 폐의전면 흉막하 부위에 선상 혹은 망상형의 음영으로서 방사선 폐렴 혹은 섬유화 소견이다. CT는 단순 흉부 촬영보다 이상 소견의 발견이 쉽다.이러한 소견은 후에 합병될 수 있는 다른 폐질환의 감별 진단에 도움이 될 것으로 보인다.moembolization via the radial artery approach were involved in this study. All underwent Allen’s test to check ulnar arterial patency. In all cases, we used the radial approach hepatic artery (RHA) catheter designed by ourselves, evaluating t\ulcorner selec\ulcorneron ability of the hepatic artery using an RHA cathter, the number of punctures, the procedure time, and compression time at the puncture site as well as complications occurring during and after the procedure. Results: Except for three in which puncture failure, brachial artery variation or hepatic artery variation occurred, all procedures were successful. The mean number of punctures was 3.5, and the

  • PDF

A Study on the Conformity Assessment of Type Curve Models to Predict Production Performance in Coalbed Methane Reservoirs (CBM 저류층의 생산성 예측을 위한 표준곡선 모델의 적합성 평가 연구)

  • Kim, Changkyun;Lee, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.34-45
    • /
    • 2018
  • The cleat system in coalbed methane (CBM) reservoirs is generally occupied by water which liberated during the coalification process, and behavior of water have influence on CBM production performance. Therefore, it is essential to investigate the effect of the water saturation to operate the degasification process and predict the CBM production performance properly. In this study, type curve analyses were performed on CBM reservoirs under various water saturation to improve the prediction of production performance. A CBM reservoir models with fully-, modestly-, and undersaturated reservoir were built to get production data using GEM by CMG Ltd., and the data were matched with Fetkovich, Palacio-Blasingame(P-B), and Agarwal-Gardner (A-G) type curve. The results showed that undersaturated reservoir was successfully matched by A-G type curve, while the Fetkovich type curve was inappropriate for matching in the late time. The modestly saturated model could be almost corresponded with all the type curve methods at late production period. For the fully saturated model, after peak production had been reached, both P-B and A-G methods showed a proper match to the reservoir production data without long-term production period. Based on the results, merit and demerit of each type curve under specific water saturation were analyzed and listed. Therefore, it is believed that the production data analysis with proper type curve model considering water saturation can be performed to predict accurate production performance.

Optimization of Culture Conditions for Production of a High Viscosity Polysaccharide, Methylan, by Methylobacterium organophilum from Methanol. (Methylobacterium organophilum에 의한 메탄올로부터 고점도 다당류, 메틸란 생산을 위한 배양조건 최적화)

  • 최준호;이운택;김상용;오덕근;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.244-249
    • /
    • 1998
  • An extracellular polysaccharide, methylan, was produced under the specific conditions by Methylobacterium organophilum from methanol. The specific growth rate of cells was approximately constant regardless of C/N ratio and the specific product yield was maximum at a C/N ratio of 30. Methylan production was suppressed by the deficiency of mineral ions such as Mn$^{++}$ or Fe$^{++}$ ion. The optimal pH for cell growth and methylan production was 7. Whereas the optimal temperature for cell growth was found to be 37$^{\circ}C$, that for methylan production was 3$0^{\circ}C$. The methanol concentration above 4% completely inhibited the cell growth. The initial methanol concentration for the maximal production of methylan was 0.5% (v/v) and above this concentration, methylan production was markedly inhibited. To overcome the substrate toxicity and inhibition for both cell growth and methylan production, a fed-bach culture of intermittent feeding within 5 g/l methanol was conducted under the optimal culture condition. Methylan production of was stimulated by nitrogen limitation and methylan was accumulated up to 8.7 g/1 and cell mass also increased up to 12.4 g/l.

  • PDF

Hydrogen Production with Space velocity and Steam/CO ratio by Water Gas Shift Reaction of Syngas from waste (폐기물 합성가스의 수성가스 전환 반응을 이용한 공간속도 및 스팀공급비에 따른 수소생산 특성)

  • Kim, Su-Hyun;Gu, Jae-Hoi;Seo, Min-Hye;Yoon, Ki-Su;Kim, Sung-Hyun;Choi, Jong-Hye
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.829-831
    • /
    • 2009
  • 폐기물, 석탄 등 다양한 시료의 가스화 반응을 통해서 발생되는 합성가스는 CO, $H_2$, $CO_2$가 주성분으로 가스엔진, 가스터빈 등의 연료로 사용하여 발전하거나 합성반응을 통해 다양한 화학원료로의 전환이 가능하다. 또한 폐기물, 석탄 등의 다양한 원료의 가스화 반응에 의해 발생한 합성가스로부터 F-T(Fischer-Tropsch) 합성을 통한 인조합성석유, Non F-T 합성을 통한 메탄올, DME(Dimethyl Ether) 등을 제조할 수 있으며, 메탄화 반응을 통해 대체천연가스(SNG, Substitute Natural Gas)로 제조하여 활용하는 방안도 가능하다. 또한 현재 상업용 규모의 수소 제조 방법 중에서 가장 경제적인 방법으로 천연가스를 개질하여 CO, $H_2$가 주성분인 합성가스를 만든 다음 수성가스 전환, PSA(Pressure Swing Adsorption)통해 $CO_2$$H_2$를 분리하여 생산하고 있으나, 천연가스 가격의 상승 및 다양한 시료로부터 향후 경제성 확보가 가능한 수소 제조 방법에 대한 연구가 진행되고 있으며, 석탄 가스화 및 폐기물 가스화를 통해 얻어진 합성가스로부터의 수소 제조 공정이 개발 및 상업화 추진되고 있다. 본 연구에서는 폐기물 가스화를 통해 발생한 합성가스에 대하여 수성가스 전환 반응을 통한 수소 생산 특성 및 수성가스 전환 반응의 공간속도 변화 및 스팀주입량 변화에 따른 반응 특성을 고찰하였다.

  • PDF

Effect of Ammonium Ion on the Production of a Polysaccharide, Methylan from Methanol by Mentylobacterium organophilum (Methylobacterium organophilum에 의한 메탄올로부터 메틸란의 생산에 대한 암모니아 이온의 영향)

  • 오덕근;임현수김정회
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.170-175
    • /
    • 1995
  • The effect of nitrogen source on production of a high viscosity exopolysaccharide, methylan, from methanol by Mentylobacterium organophilum was investigated in fed-batch culture. During the fermentation, cells continued to grow even after the nitrogen source added to the medium was depleted and methylan production was stimulated under the condition which ammonium ion was depleted. Cell growth increased proportionally to the initial concentration of ammonium ion in the medium, but methylan production was significantly inhibited at the high concentration of ammonium ion. As the initial concentration of ammonium ion increased, the specific growth rate, the specific product formation rate and the specific substrate consumption rate decreased due to the inhibitory effect of excess ammonium ions. In order to reduce the inhibitory effect by high concentration of ammonium ion. The control of ammonium ion concentration within the desired level(usually $0.45g/\ell$) was necessary. When ammonium ion concentration was maintained below $0.15g/\ell$ by exponential feeding, methylan production could be increased up to $12.5g/\ell$.

  • PDF

Economic Comparison of Various Turquoise Hydrogen Production Processes (다양한 청록수소 생산 공정에 대한 경제성 분석)

  • SOOYONG LEE;VAN-TIEN GIAP;MUJAHID NASEEM;JONGHWAN KIM;YOUNG DUK LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.256-266
    • /
    • 2023
  • Hydrogen production can be classified based on the energy source, primary reactor type, and whether or not it emits carbon dioxide. Utilizing color representation proves to be an effective means of expressing these distinctive characteristics. Among the various clean hydrogen production techniques, there has been a growing interest in turquoise hydrogen production, which involves the decomposition of methane or other fossil fuels. This method offers advantages in terms of large-scale production and cost reduction through the sale of solid-carbon byproduct. In this study, an extensive literature review was conducted to select and analyze several promising candidates for turquoise hydrogen production processes. The efficiency and economics of these processes were evaluated using stream data reported in the literature sources. The findings indicate that the levelized cost of hydrogen production (LCOH) is significantly influenced by the sales of byproducts, specifically the solid-carbon and carbon monoxide byproducts.

A Study on Biogas Production from Low Rank Coal in a Column Experiment (저품위 석탄을 충전한 칼럼실험에서의 바이오가스 생산에 관한 연구)

  • Yoon, Seok-Pyo;Lim, Hak-Sang;Yun, Yeo-Myeong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • In a column experiment with low rank coal, rice straw was additionally supplied to induce methane gas generation by microorganisms in the state of supplying microorganisms and nutrients, and long-term biogas production characteristics were observed. When the weight ratio of the rice straw to coal was 0.04 or less, there was no significant gas generation. At 0.08, the biogas was generated for about 90 days. However, the methane gas generation was only 5% compared with the vial test result at optimum condition. Therefore, in order to produce biogas in the coal deposit in situ, a reactor that operates at COD concentration of 2000 mg/L or more at a ratio of 1:3 or more of rice straw to coal should be installed on the ground or under the ground. Liquid from the column filled with coal and rice straw and a liquid from vial containing rice straw were analyzed by microbial community analysis using pyrosequencing method, and compared the dominant microbial species among the two samples. In terms of the uniformity and diversity of the bacteria, the coal-filled column showed various species distribution, which has shown to be a disadvantageous microbial distribution to methane production.