Thermodynamic analysis on carbon dioxide reforming of methane was performed using a computer program which can handle condensed species in the products, and the reforming experiments were conducted over $Al_2O_3$, $La_2O_3$, ZSM-5, MCM-41, KIT-1 supported nickel catalysts, and a commercial ICI 46-1. It was estabished that a system which consists of $CH_4$, $CO_2$, CO, $H_2$, $H_2O$, and C is appropriate for theoretical equilibrium calculations and addition of water vapor or oxygen was found to diminish the contribution of carbon dioxide in reforming. Silicate molecular sieve-supported catalysts such as Ni/ZSM-5, Ni/MCM-41, Ni/KIT-1 were effective for high $CH_4$ and $CO_2$ conversions as well as for high CO yield. Coke formation was suppressed when CaO was added as a promoter. Ni/Ca/KIT-1 which contains 10% Ni with 3% Ca showed conversion approaching equilibrium levels above $650^{\circ}C$ and maintained constant activity over 20 h. Despite increased space velocity, relatively high conversion and CO yield were observed.
Proceedings of the Korean Vacuum Society Conference
/
2011.08a
/
pp.358-358
/
2011
탄소원자로 구성된 2차원의 단원자 층의 그래핀은 우수한 기계적 강도, 전기전도도, 화학적 안정성 등의 특성으로 인하여 현재 기초연구 및 응용연구들이 활발하게 진행되고 있다. 일반적으로 그래핀의 물성은 그래핀의 층수, edge 형태, 구조적 defect의 양, 불순물의 양 등에 의해 좌우되는 것으로 알려져 있어, 그 원인들의 영향을 살펴보는 일은 그래핀 물성 제어의 측면에서 매우 중요하다. 한편, 그래핀을 산업적으로 이용하기 위해서는 CVD합성법이나 화학적인 박리법 등과 같은 대량의 그래핀 제조법이 요구되며, 이러한 그래핀들의 산화거동을 알아 보는 것은 향후 산화 분위기에서 사용될 그래핀 응용소자 개발에 유용한 정보가 될 것이다. 본 연구에서는 그래핀 층수에 따른 산화 거동을 연구하기 위하여, 그래핀을 산화시킨 후 Raman 분광법과 AFM 분석을 통하여 광학적, 구조적 변화를 체계적으로 분석하였다. 그래핀은 니켈박막을 촉매층으로 이용한 실리콘 웨이퍼에 메탄가스를 원료가스로 한 CVD법으로 합성하였다. 효율적인 산화처리를 위해 합성한 그래핀은 홈이 있는 기판 위에 전사하여 산화반응시 기판의 영향을 제거하였다. 산화처리는 열 산화처리 및 플라즈마 산화처리로 나누어 각각 실시하였으며, 5분간의 산화처리와 특성평가를 반복적으로 실시하였다. 한편, 층수에 따른 산화 거동을 조사하기 위해서는, 합성한 그래핀 내에 존재하는 단층영역, 수층영역, 다층영역을 지정하여 매회 동일영역을 분석함으로써 산화 거동을 분석하였다.
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.71.2-71.2
/
2013
천연가스를 화학적 전환에 의해 부가가치를 높이기 위해서는 리포밍에 의해 합성가스(CO/H2)를 경유하는 간접전환경로가 현재로서는 가장 현실적인 방법이라 할 수 있다. 천연가스를 이용한 합성가스 제조기술은 수증기개질법(SRM), 이산화탄소 개질법(CDR, dry reforming), 부분산화법, 촉매 부분 산화법, 자열개질법 등으로 구분되며, 최근에는 각각의 제조방법의 장점을 고려하여 혼합개질법 또는 일련의 리포머 조합 방법이 개발되고 있다. CDR은 촉매 하에서 메탄과 이산화탄소의 직접접촉에 의해 반응이 일어나며, 수소와 일산화탄소의 비가 같은 합성가스가 제조된다. SRM에 비하여 고온에서 반응이 일어나고 전환율이 더 낮으므로 에너지 소비가 상대적으로 높다. 하지만, SRM과 함께 사용하면 합성가스 비율을 F-T합성이나 메탄올 합성에 적절한 비율로 조절이 가능한 장점이 있으며, 온실가스를 저감시킬 수 있는 전환기술로도 각광받고 있다. 본 발표에서는 최근의 CDR을 이용한 가스로부터 합성석유(GTL)와 메탄올을 고효율로 생산하는 기술 개발 동향에 대해서 소개하고자 한다.
Pd catalyst have been used in hydrogenation, oxidation, and low temperature combustion reaction. Recently, it is candidated as a possible reagents in the partial oxidation of methanol reformers of the fuel cell. Pd catalysts, even though it is very precious and expensive, catalytic functioning is good, but it still need to be improved in the matter of durability and low catalytic activity after calcination. In this study, we synthesize the improved Pd catalyst and study their chemical functioning.
Lee, Seong Woon;Kim, Eun Ju;Lee, Hong Joo;Park, Jung Hoon
Korean Chemical Engineering Research
/
v.56
no.3
/
pp.297-302
/
2018
Bead type and hollow fiber type catalyst (HFC, Hollow Fiber type Catalyst) was prepared by $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF1928) perovskite powder catalyst which showed excellent methane complete oxidation characteristics through previous studies. The HFC have a cylindrical shape with an empty interior, and pores can be formed through Phase inversion method so the specific surface area can be remarkably improved. In the case of the bead type catalyst prepared by adding Methyl Cellulose (MC), $SrCO_3$ was produced in addition to the original catalyst composition of LSCF1928 due to the reaction of $CO_2$ emitted from MC and Sr of the catalyst. In the case of the HFC, a single phase perovskite structure was obtained without impurities. The HFC calcined at $700{\sim}900^{\circ}C$ showed pore structure of finger-sponge-finger structure, and 99.9% oxygen conversion rate was achieved through complete oxidation of methane at $475^{\circ}C$. Air gap and spinning pressure condition were changed to control the HFC pore. 2 cm air gap and 7 bar spinning pressure showed the best catalytic performance and achieved oxygen conversion rates of more than 70.65%, 93.01%, and 99.99% at $425^{\circ}C$, $450^{\circ}C$ and $475^{\circ}C$, respectively.
Journal of Korean Society of Environmental Engineers
/
v.33
no.9
/
pp.662-669
/
2011
This study was conducted to biologically convert methane into methanol. Methane contained in biogas was bio-catalytically oxidized by methane monooxygenase (MMO) of methanotrophs, while methanol conversion was observed by inhibiting methanol dehydrogenase (MDH) using MDH activity inhibitors such as phosphate, NaCl, $NH_4Cl$, and EDTA. The degree of methane oxidation by methanotrophs was the most highly accomplished as 0.56 mmol for the condition at $35^{\circ}C$ and pH 7 under 0.4 (v/v%) of biogas ($CH_4$ 50%, $CO_2$ 50%) / Air ratio. By the inhibition of 40 mM of phosphate, 50 mM of NaCl, 40 mM of $NH_4Cl$ and $150{\mu}m$ of EDTA, methane oxidation rate could achieve more than 80% regardless of type of inhibitors. In the meantime, addition of 40 mM of phosphate, 100 mM of NaCl, 40 mM of $NH_4Cl$ and $50{\mu}m$ of EDTA each led to generating the highest amount of methanol, i.e, 0.71, 0.60, 0.66, and 0.66 mmol when 1.3, 0.67, 0.74, and 1.3 mmol of methane was each concurrently consumed. At that time, methanol conversion rate was 54.7, 89.9, 89.6, and 47.8% respectively, and maximum methanol production rate was $7.4{\mu}mol/mg{\cdot}h$. From this, it was decided that the methanol production could be maximized as 89.9% when MDH activity was specifically inhibited into the typical level of 35% for the inhibitor of concern.
Transactions of the Korean Society of Mechanical Engineers B
/
v.31
no.5
/
pp.473-481
/
2007
Compared to other types of fuel cells, SOFC has advantages like a wide output range and the direct use of hydrocarbon fuel without the process of external reforming. Particularly because the direct use of fuel without reforming reaction is closely linked to overall system efficiency, it is a very attractive advantage. We tried the operation with methane. However, although methane has a small number of carbons compared to other hydrocarbon fuels, our experiment found the deposition of carbon on the surface of the SOFC electrode. To overcome the problem, we tried the operation through activating internal reforming. The reason that internal reforming was possible was that SOFC runs at high temperature compared to other fuel cells and its electrode is made of Ni, which functions as a catalyst favorable for steam reforming.
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.78-78
/
2010
그래핀(Graphene)은 탄소원자가 육각형 벌집(honeycomb)구조로 빼곡히 채워진 2차원의 단원자 층으로 역학적 강도와 우수한 화학적/열적 안정성 및 흥미로운 전기 전도 특성을 가지고 있다. 이러한 그래핀의 우수한 특성으로 인하여 현재 기초연구뿐만 아니라 응용연구 등 많은 연구들이 진행되고 있다. 일반적으로 그래핀의 우수한 물리적 특성들은 그래핀의 층수, 모서리(edge)구조, 결함(defect), 불순물 등에 의해 크게 좌우되는 것으로 알려져 있다. 따라서 그래핀의 구조 및 결함정도를 자유로이 제어하고 그에 따르는 특성 변화를 관찰하는 것은 기초연구의 측면에서 뿐만 아니라 향후 그래핀 응용에 있어서도 매우 중요하다고 할 수 있다. 본 연구에서는 그래핀의 내산화 특성을 연구하기 위하여, 그래핀을 열 및 플라즈마 산화 분위기에 노출시킨 후, Raman 분광법을 이용하여 광학적, 구조적 변화를 분석함으로써 그래핀의 내산화 특성에 대하여 조사하였다. 그래핀은 실리콘 웨이퍼에 전자빔증착법으로 니켈박막을 증착한 후 열화학증기증착법으로 합성하였으며, 메탄가스를 원료가스로 $900^{\circ}C$ 전후에서 합성하였다. 합성한 그래핀은 산화반응 시 기판의 영향을 제거하기 위하여 트렌치 구조의 기판 위에 전사(transfer)함으로써 공중에 떠있는 구조를 구현하였다. 열 산화의 경우, 합성한 그래핀을 대기분위기의 고온($500^{\circ}C$) 챔버에 넣고 처리시간에 따른 특성변화를 살펴보았다. 플라즈마 산화의 경우는 공기를 이용하여 직류플라즈마를 발생시킨 후 0.4 W의 낮은 플라즈마 파워를 이용하여 플라즈마 산화처리와 특성평가를 매회 반복하였다. 그래핀의 특성분석은 Raman분광기와 광학현미경, 원자힘현미경(AFM) 등을 이용하여 분석하였으며, 상기 결과들은 향후 산화환경에서의 그래핀 응용소자 개발에 유용할 것으로 예상된다.
Diphenylmethane (pKa=33.4), which is difficult to be oxidized in normal oxidation conditions, was oxidized to produce benzophenone at ambient temperature and atmospheric pressure by using phase transfer catalysts and solid potassium tert-butoxide as base. Quaternary salt such as benzyltriethylammonium chloride, tetrabutyl ammonium bisulfate, tetrabutylphosponium chloride, are ineffective catalysts for this reaction, but 18-crown-6 and polyethylene glycols showed catalytic activity. The conversion of diphenylmethane was increased with increasing chain length of PEG molecules when they are used as phase transfer catalysts both in equal molar and equal weight basis. The conversion of diphenylmethane was increased with the agitation speed, and aprotic solvent like DMF showed higher reaction rate compared with benzene.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.