• Title/Summary/Keyword: 메탄배출

Search Result 238, Processing Time 0.027 seconds

Diel Change of Methane Emission through Rice Plant under Different Water Management and Organic Amendment (물 관리와 유기물 시용이 다른 논에서 벼 식물체를 통한 메탄 배출의 일변화)

  • Shin, Yong-Kwang;Lee, Yang-Soo;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.32-40
    • /
    • 2003
  • To characterize diel pattern of methane transport via rice plant, methane emission was measured on specific days in rice growing stages; tillering, meiotic, heading and harvest stages, from a paddy under different water management and organic amendments. Methane emission was monitored every two hours a day from chambers with and without rice plants. Proportion of the rice plant-mediated methane emission at different stage increased till the maximum growth of LAI and dry weight, and decreased thereafter. The proportion of methane emission through rice plants on June 18-19 at tillering stage was 38.4, 36.5 and 64.3 percent for NPK, Rice straw compost, RSC, and rice straw on February, RS2, respectively. The proportion on July 30-31 at meiotic stage was 70.4, 74.3 and 74.4 percent for NPK, RSC and RS2, respectively. The proportion on August 20-21 at heading stage was 80.1, 84.5 and 74.8 percent for NPK, RSC and RS2, respectively. The proportion on September 28-29 at harvest stage was 69.9, 65.9 and 64.4 percent for NPK, RSC and RS2, respectively.

Metagenomics analysis of methane metabolisms in manure fertilized paddy soil (메타게놈 분석을 이용한 돈분뇨 처리에 의한 논토양에서 메탄대사에 미치는 영향 조사)

  • Nguyen, Son G.;Ho, Cuong Tu;Lee, Ji-Hoon;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.157-165
    • /
    • 2016
  • Under flooded rice fields, methanogens produce methane which comes out through rice stalks, thus rice fields are known as one of the anthropogenic sources of atmospheric methane. Studies have shown that use of manure increases amount of methane emission from rice. To investigate mechanisms by which manure boosts methane emission, comparative soil metagenomics between inorganically (NPK) and pig manure fertilized paddy soils (PIG) were conducted. Results from taxonomy analysis showed that more abundant methanogens, methanotrophs, methylotrophs, and acetogens were found in PIG than in NPK. In addition, BLAST results indicated more abundant carbohydrate mabolisetm functional genes in PIG. Among the methane metabolism related genes, PIG sample showed higher abundance of methyl-coenzyme M reductase (mcrB/mcrD/mcrG) and trimethylamine-corrinoid protein Co-methyltransferase (mttB) genes. In contrast, genes that down regulate methane emission, such as trimethylamine monooxygenase (tmm) and phosphoserine/homoserine phosphotransferase (thrH), were observed more in NPK sample. In addition, more methanotrophic genes (pmoB/amoB/mxaJ), were found more abundant in PIG sample. Identifying key genes related to methane emission and methane oxidation may provide fundamental information regarding to mechanisms by which use of manure boosts methane emission from rice. The study presented here characterized molecular variation in rice paddy, introduced by the use of pig manure.

Assessment on Greenhouse Gas ($CH_4$) Emissions in Korea Cropland Sector from 1990 to 2008 (1990년부터 2008년까지 우리나라 경종분야 온실가스 (메탄) 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;So, Kyu-Ho;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.911-916
    • /
    • 2010
  • Rice paddy fields and crop residue burning are a major source of methane ($CH_4$) emissions, a potent greenhouse in agriculture. This study was conducted to assess $CH_4$ emissions in Korea cropland sector from 1990 to 2008. Greenhouse gas emissions from the cropland sector are calculated in two categories: 4C (Rice cultivation) and 4F (Field burning). In 4C: Rice Cultivation, methane emissions from paddy fields (continuously flooded and intermittently flooded) cultivated for rice production had decreased from 395 $CH_4$ $10^3$ Mg in 1990 to 297 $CH_4$ $10^3$ Mg in 2008. $CH_4$ emissions converted into $CO_2$ equivalent were 8,303 $CO_2$-eq. $10^3$ Mg in 1990 and 6,229 $CO_2$-eq. $10^3$ Mg in 2008. Greenhouse gas emissions from paddy field in Korea showed that it was gradually going down as the cultivation area decreased. In 4F: Field Burning, methane emissions by burning crop residue increased from 2,502 $CH_4$ Mg in 1990 to 2,726 $CH_4$ Mg in 2008. Emissions converted $CH_4$ into $CO_2$ equivalent were 53 $CO_2$-eq. $10^3$ Mg in 1990 and 57 $CO_2$-eq. $10^3$ Mg in 2008. Total emissions of $CH_4$ from the cropland sector declined from 8,356 $CO_2$-eq. $10^3$ Mg in 1990 to 6,287 $CO_2$-eq. $10^3$ Mg in 2008.

Effect of Salt Concentration on Methane Emission in a Coastal Reclaimed Paddy Soil Condition: Pot Test (간척지 논 토양의 염 농도가 메탄 배출에 미치는 영향)

  • Lim, Chang-Hyun;Kim, Sang-Yoon;Jeong, Seung-Tak;Kim, Gun-Yeob;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.252-259
    • /
    • 2013
  • BACKGROUND: Salt accumulation in coastal reclaimed soil can decrease plant growth and productivity, which could lead to considerable variation of methane($CH_4$) emission in a rice paddy. The objective of this study was to evaluate the effect of salt concentration on $CH_4$ emission in a coastal reclaimed soil. METHODS AND RESULTS: The effect of salt concentration on $CH_4$ emission and rice growth characteristics was studied by pot test, which packed by reclaimed paddy soils collected from Galsa, Hadong, Gyeongnam province. Electrical conductivity(EC) of each treatment was controlled by 0.98, 2.25, 5.05 and 9.48 dS/m and $CH_4$ emission was characterized a week interval by closed chamber method during rice cultivation. The $CH_4$ emission rate was significantly decreased with increase of salt accumulation, but total $CH_4$ flux in EC 5.50 dS/m treatment was lower than those of EC 9.48 dS/m treatment. It seems because of higher content of water soluble $SO{_4}^{2-}$ in EC 5.50 dS/m treatment than those of EC 9.48 dS/m treatment. Rice growth and grain yield were significantly decreased with increase of salt accumulation. Soil properties, especially EC and pH were negatively correlated with $CH_4$ flux, while rice growth characteristics like plant height and tiller number show significantly positive correlation with $CH_4$ flux. CONCLUSION(S): Conclusively, salt accumulation significantly decreased $CH_4$ flux in a rice paddy, which could be useful information for evaluating $CH_4$ flux in reclaimed area in Korea.

Estimation of Methane Emission by Water Management and Rice Straw Application in Paddy Soil in Korea (한국 논토양(土壤)에서 물관리(管理)와 볏짚 시용(施用)에 따른 메탄 배출량(排出量)의 추정(推定))

  • Shin, Yong-Kwang;Yun, Seong-Ho;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.261-265
    • /
    • 1995
  • Methane flux from a rice paddy in Korea was measured to study the effects of water management and rice straw application on methane emission under different water managements ; flooding and intermittent irrigation, and with or without rice straw application. Methane emission ranged from 0.066 to $0.455g\;CH_4m^{-2}d^{-1}$. Intermittent irrigation has shown a mitigation effect of methane emission, 70% in NPK plot and 47% in NPK plus rice straw plot, relative to that of flooding. Methane emission from Korean paddy was estimated as 399,590tons per year assuming that paddy fields were managed under intermittent irrigation and rice straw application. This estimation was lower than that of OECD's by 56%, Neue's by 51%, and Matthew's by 62%, while higher than that of Taylor's by 118%.

  • PDF

Emission Characteristics of Methane and Nitrous Oxide by Management of Water and Nutrient in a Rice Paddy Soil (논에서 물과 양분관리에 따른 메탄CH4), 아산화질소(N2O)배출 특성)

  • Kim, Gun-Yeob;Park, Sang-Il;Song, Beom-Heon;Shin, Yong-Kwang
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.136-143
    • /
    • 2002
  • Emission of methane and nitrous oxide affected by nitrogen fertilizer materials were measured simultaneously in rice paddy fields under flooding and intermittent irrigation in 2000. Studies focused on mitigating $CH_4$ emission from rice paddy fields are summarized and the possibilities and limits applied to world's rice cultivation are discussed. The mitigation options are water management, soil amendments, organic matter management, different tillage, rotation, and cultivar selection. Altering water management, in particular promoting midseason aeration by short-term drainage, is one of the most promising strategies, although these practices may be limited to the rice paddy fields where the irrigation system is well prepared. The test site was divided into two water managements: a continuously flooded plot which was maintained flooded by constant irrigation from May to September, and an intermittently drained plot in which short-term (20days) draining practices were performed one times during the flooding period. By total emission of GHGs converted by global warming potential (GWP), flooding plots were higher 170$\sim$208% than interimittent irrigation plots. For emission of GHGs in fertilizer materials, it was high in the order of Swine slurry>Urea+Rice straw>Urea>LCU. Basing on GHGs emission of urea fertilization under flooding as baseline GWP of urea fertilization and Latex-coated urea under intermittent irrigation showed lower GHGs emission by 41.4% and 55.8 respectively. In this case fertilizer use efficiency (kg unhulled rice/ of applied N) were 18.2$\sim$20.2 and 18.7$\sim$19.0 and 9.3 and 5.8$\sim$6.6 for Swine slurry and LCU and Urea+Rice straw and Urea in the continuously flooded and intermittently drained plot.

Analysis of methane Emissions on Paddy Water Management Methods (벼 재배 논물관리기술에 따른 메탄 배출량 분석)

  • Hyeon Yong Jeong;Tae Hwan Lee;Dong Hyuk Kum;Min Hwan Shin;Kyoung Jae Lim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.466-466
    • /
    • 2023
  • 전세계적으로 2050년까지 탄소 배출량을 0으로 만들기 위한 탄소중립을 선언하였고, 우리나라에서는 온실가스 감축 목표 달성을 위해 논물관리기술 확산, 가축분뇨 자원순환 등 농업 분야 탄소 저감 계획을 수립하였다. 특히, 논물관리기술을 통한 탄소 저감 목표를 달성하기 위해서는 지역별 적합한 논물관리기술 모델이 개발되어야 한다. 이에 본 연구에서는 강원도 지역에 적합한 논물관리기술 모델 개발을 위해 강원도 원주시 일대 6개의 시험포를 조성하여 메탄 발생량을 모니터링 하였다. 각 시험포는 상시담수(S1), 4주 중간 물떼기+얕게 걸러 대기(S2), 4주 중간 물떼기+얕게 대기(S3), 3주 중간 물떼기+얕게 걸러 대기(S4), 2주 중간 물떼기+얕게 걸러 대기(S5), 2주 중간 물떼기+얕게 대기(S6)로 논물관리기간을 다르게 설정하였다. 그리고 각 시험포에는 메탄 발생량 모니터링을 위해 각각 3개의 챔버와 논물관리를 위한 자동물꼬조절장치를 설치하였다. 메탄발생량 모니터링은 2022년 5월부터 2022년 9월까지 총 5개월 동안 25회 진행하였다. 메탄 발생량 모니터링 결과 S1은 423.1 kg/ha, S2는 348.4 kg/ha, S3은 396.4 kg/ha, S4는 164.7 kg/ha, S5는 347.9 kg/ha, S6은 234.1 kg/ha 의 메탄이 배출된 것으로 분석되었다. 분석결과와 같이 S1에서 메탄 발생량이 가장 많았으며, S4에서 가장 적게 발생한 것으로 분석되었다. 논에서 발생되는 메탄에 영향을 주는 인자는 토양 유기물, 토양 산도 등이 중요한 요인으로 알려져 있으며, 이앙 전과 수확 후 토양분석을 진행한 결과 시험포별 인자별 변화량 차이가 나타났다. 따라서 장기적인 모니터링을 통해 논물관리기술에 따른 토양유기물 및 토양 산도 변화에 대한 보완이 필요할 것으로 판단되며, 지속적인 메탄 발생량 모니터링을 통해 강원도 지역에 적합한 논물관리기술을 적용해야 할 것으로 보여진다.

  • PDF

Effects of Soil Types on Methane Gas Emission in Paddy During Rice Cultivation (논토양 종류가 메탄배출에 미치는 영향)

  • Seo, Young-Jin;Park, Jun-Hong;Kim, Chan-Yong;Kim, Jong-Su;Cho, Doo-Hyun;Choi, Seong-Yong;Park, So-Deuk;Jung, Hyun-Cheol;Lee, Deog-Bae;Kim, Kwang-Seop;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1220-1225
    • /
    • 2011
  • Anaerobic decomposition of organic materials in flooded rice fields produces methane ($CH_4$) gas, which escapes to the atmosphere primarily by transport through organs of the rice plants such as arenchyma etc., Although the annual amount of methane emitted from a given area is influenced by cultivation periods of rice and organic/inorganic amendments etc., soil type also affects methane emission from paddy soil during a rice cultivation. A field experiment was conducted to evaluate effects of soil type on $CH_4$ emission in two paddy soils. One is a red-yellow soil classified as a Hwadong series (fine, mixed, mesic family of Aquic Hapludalfs), and the other is a gley soil classified as a Shinheung series (fine loamy, mixed, nonacid, mesic family of Aeric Fluvaquentic Endoaquepts). During a flooded periods, redox potentials of red-yellow soil were significantly higher than gley soil. $CH_4$ emission in red-yellow soil ($0.21kg\;ha^{-1}\;day^{-1}$) was lower than that in gley soil ($5.25kg\;ha^{-1}\;day^{-1}$). In the condition of different soil types, $CH_4$ emissions were mainly influenced by the content of total free metal oxides in paddy soil. The results strongly imply that iron- or manganese-oxides of well ordered crystalline forms in soil such as goethite and hematite influenced on a $CH_4$ emission, which is crucial role as a $CH_4$ oxidizers in paddy soil during a rice cultivation.

The Seasonal Characteristics of VOC Emission in Landfill Site (매립장 배출공의 휘발성유기화합물의 계절(겨울과 여름철)간 배출특성에 대한 연구)

  • 오상인;김기현;최여진;전의찬;사재환
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.325-326
    • /
    • 2003
  • 매립지 내부에서 진행되는 혐기성 분해로 인한 폐기물의 부패현상은 일반적으로 악취와 관련한 직접적인 대기오염문제에서부터 메탄과 이산화탄소와 같은 온실기체의 발생 등과 같이 기후환경변화와 관련된 문제에 이르기까지 매우 심각한 오염원으로 인식되고 있다. 특히 매립지 내부의 가스상 오염물질들의 누적을 억제하기 위하여 설치하는 배출공에서는 이산화탄소나 메탄과 같은 온실기체 이외에도 약 80여 종에 이르는 다양한 휘발성유기화합물질 (Volatile Organic Compound, 이하 VOC) 성분들이 검출되기도 하였다 (Young and Parker, 1983). (중략)

  • PDF

Effects of Cultural Practices on Methane Emission in Tillage and No-tillage Practice from Rice Paddy Fields (논토양에서 경운 및 무경운재배시 재배방법별 메탄 배출 양상)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Kim, Min-Tae;Kang, Hang-Won;Kang, Ui-Gum;Lee, Dong-Chang;Shin, Yong-Gwang;Kim, Kun-Yeop;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.216-222
    • /
    • 2002
  • Field experiments were conducted to investigate the effect of various cultural practices on methane($CH_4$) emission in tillage and no-tillage practice in a clayey paddy soil from 1998 to 2000. The factors evaluated in tillage and no-tillage methods were types of nitrogen fertilizers, application method of chemical fertilizers, rice straw application and cultivation method. Of the nitrogen fertilizers, the amount of $CH_4$ emission in ammonium sulfate plot was the lowest, regardless of tillage and the application method. 26.4~41.1% of reduction by ammonium sulfate compared with urea. But in no-tillage which have problem of poor rice yield than tillage, coated urea was more effective nitrogen fertilizer because that showed similar $CH_4$ emission and highest rice yield at 80% of dosage of nitrogen. No-tillage plot emitted lower $CH_4$ than tillage plot where the fertilizers were incorporated. On the contrary, no-tillage plot showed a little higher $CH_4$ emission compared with tillage plot for the surface application. When rice straw was applied, no-tillage practice reduced methane emission by 26.6% compared with tillage practice, but showing a little difference of 10.7% in no application. With cultivation method, no-tillage practice reduced methane emission 26.6% compared with tillage for the 30-d-old seedling transplanting. But for the dry direct seeding practice, no-tillage was a less effective because considerable amounts of rice straw incorporated by tillage were more decomposed aerobically in the soil and emitted as $CO_2$ to the atmosphere with flooding in no-tillage soil.