Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. These results suggest that methane production is highly influenced by changes in temperature and salinity in coastal mud flat. And that global climatic change may induce biological feedback by affecting production of another greenhouse gas, namely methane from coastal mud flat.
An integrated wastewater treatment pond system is developed for treatment and recycling of excreta from dairy cattle. It is composed of three ponds in series. A pit with a capacity of $10m^3$, 2-day hydraulic residence time, and overflow velocity of $1.5m^3m^{-2}day^{-1}$ is located internally in primary pond. It is designed for efficient sludge sedimentation and effective methane fermentation. It receives $5m^3/day$ of diluted cattle excreta by the water used for clearing stalls. A submerged gays collector for the recovery of methane is installed on the top of the pit. The average BOD_5 concentration of influent is 398.7mg/l. That of the effluent from primary pond is 49.2mg/l. About 88% of BOD_5 are removed in primary pond. It is assumed that about 60% of the influent BOD_5 is removed in the pit and that almost all of the carbon of the removed BOD_5 in the pit is converted to methane and carbon dioxide. Methane fermentation of the pit is well established at $16^{\circ}C$. This phenomena results from temperature stability, complete anaerobic condition, and neutral pH of the pit. Gas from the collector is almost 90% methane, less than 9% nitrogen, and less than 1% carbon dioxide. Thus a purified methane is produced, which can be used as energy source.
Journal of the Korea Organic Resources Recycling Association
/
v.19
no.2
/
pp.49-54
/
2011
This study was conducted to evaluate the performance of methane fermentation from effluent of hydrogen fermentation reactor in anaerobic baffled reactor (ABR) and anaerobic sequencing batch reactor (ASBR). Two reactors were operated at organic loading rate of $1.0kg\;COD/m^3{\cdot}d$ and hydraulic retention time (HRT) of 20 day. Methane production rates of ABR and ASBR for start-up periods were 0.04 L/L/d and 0.19 L/L/d, respectively, whereas maximum methane production rates of ABR and ASBR were 0.25 L/L/d and 0.31 L/L/d, respectively. Removal rates of chemical oxygen demand (COD) in ABR and ASBR for start-up periods were 89% and 92%, respectively. After startup periods, removal rates of COD and volatile solids (VS) in ABR and ASBR were maintained over 90%. The specific methanogenic activity (SMA) increased as microorganism acclimated to the substrate.
Hydrate dissociation is required to produce methane, which generates both water and methane. Thus, multiphase fluid flow and desalination are expected during methane production, which causes the fine migration and clogging in pores. The goal of this study is to explore the effects of both multiphase fluid flow and desalination on the migration and clogging of kaolin particles as typical fines. The results are as follows : (1) the larger the pore size is, the more mounting the critical clogging concentration is, (2) kaolin particles are more easily clustering and clogging in deionized water than salty water, and (3) the critical clogging concentration of kaolin in multiphase fluid flow is lower than in singlephase fluid flow. Therefore, clustering and clogging of kaolin within pore occur easily due to desalination and multiphase fluid flow when methane is produced from hydrates, and the efficiency of methane production is expected to decrease due to the degradation of permeability coefficient.
천연의 메탄 하이드레이트를 생산하기 위한 방법으로는 크게 다음의 세 가지가 알려져 있다; 감압법, 열 자극법, 저해제 주입법. 갑압법이 가장 경제성이 높은 방법으로 보고 있으며, 이를 활용한 개발생산 시에는 해리 이후의 잔류 물에서 하이드레이트 전구체라고 알려진 하이드레이트 구조가 남아 있으며 이는 생산된 메탄 가스의 이송 과정에서 하이드레이트 재생성의 위험을 높이게 된다. 하이드레이트 재생성을 방지할 수 있는 한 가지 수단으로는 억제제를 주입하는 방법이 가능한데, 적절한 양을 주입함으로써 생산의 경제성을 높일 수 있다. 최근 들어 kinetic 억제제의 적용이 인기를 얻고 있는 바, 수용성 고분자인 이들 억제제를 적용하여 초기 하이드레이트 핵 생성을 지연시킬 수 있다. 이들 kinetic 억제제를 메탄 하이드레이트 생산 과정에서 투여하는 방법을 실험적으로 측정해 보았고, 잔류의 하이드레이트 구조에 대한 존재여부에 대하여 간접적으로 증명해보고자 하였다. kinetic 억제제로는 Poly Vinyl Caprolactam (PVCap)을 선택하였다. 해리압력, PVCap 주입 농도에 변화를 주면서 메탄 하이드레이트 생산, 수송과정에서 발생할 수 있는 하이드레이트 재생성 억제에 대한 효과를 실험적으로 측정하였다.
Kim, Ji-Ae;Yoon, Young-Man;Jeong, Kwang-Hwa;Kim, Chang-Hyun
Korean Journal of Soil Science and Fertilizer
/
v.45
no.6
/
pp.1049-1057
/
2012
The study investigated the biochemical methane potential (BMP) assay of pig slurry supplemented with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS, M+RA+FS, and control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 60 days at $38^{\circ}C$ using anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum. In results, 5% RF and RA+FS increased total biogas up to 8.1 and 8.4%, respectively, compared with that of control (p<0.05). All 5% microbial culture supplements significantly increased methane production up to 12.1~17.9% compared with that of control (p<0.05). Total solid (TS) and volatile solid (VS) digestion efficiencies showed no relationship to the increased supplementation levels of microbial cultures. After incubation, pH values in all treatment groups ranged between 7.527 and 7.657 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that both hydrolysis and methanogenesis stages for methane production in anaerobic batch reactors were influenced by the supplemented microorganisms due to the chemical characteristics of pig slurry, but only the 5% supplementation level of all microbial culture supplements used in the experiment affected methane production.
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.28
no.3
/
pp.95-120
/
2023
Methane (CH4) is a key greenhouse gas in the atmosphere with 85 times greater greenhouse potent relative to carbon dioxide (CO2). The atmospheric concentration of CH4 is rapidly increasing due to the intensive usage of CH4 and the thawing of the cryosphere. Additionally, with the current warming of ocean water, the dissociation of gas hydrates, an ice-like compound and the largest reservoir of CH4 on Earth, is expected to occur, resulting in the release of CH4 from the seafloor into the overlying water and atmosphere. Moreover, bottom water hypoxia is another concern that potentially introduces greenhouse gases into the atmosphere. With ongoing global warming and eutrophication, the size and duration of bottom water hypoxia are rapidly increasing. These low-oxygen conditions would relocate the redox zone shallower in sediment or in the water column, causing the release of CH4 into the atmosphere and thereby intensifying global warming. However, there exists a gap in the understanding of CH4 dynamics including its generation in relation to bottom water hypoxia. Therefore, this review article aims to understand the relationship between CH4 and bottom water hypoxia and to draw attention to CH4 investigation in Korea.
본 연구는 바이오가스의 에너지효율성을 높이기 위한 연구로서 바이오가스 정제공정과 초저온액화공정을 통하여 액화바이오메탄을 생산하는 바이오가스 고질화기술개발 연구이다. 바이오가스 정제공정은 탈황, 제습, 흡착, 압축, $CO_2/CH_4$ 분리공정으로 구성하고, 초저온액화공정은 열교환기, $CO_2$ 제거설비, 질소냉매 공급공정으로 구성하여 혐기성소화조에서 발생하는 바이오가스($CH_4$ 농도: 60~65%, $H_2S$: 1,500~2,500ppm)를 $200Nm^3/hr$의 유량으로 인입시켜 액화바이오메탄을 생산하였다. 연구결과, 탈황공정에서는 가성소다 세정법을 이용하여 1,500~2,500ppm으로 인입되는 $H_2S$를 100ppm 이하로 제거한 후, 흡착법을 이용하여 $H_2S$를 완전히 제거하였다. 바이오가스에 포화된 수분은 냉각제습과 흡착제습공정을 통해 Dew point $-70{\sim}-90^{\circ}C$까지 제거하여 안정적으로 $CO_2/CH_4$ 분리공정에 인입시켰다. $CO_2/CH_4$ 분리공정은 흡착방식을 적용하여 $CH_4$ 순도가 95% 이상인 바이오메탄을 생산하였으며, 이때 메탄 회수율은 약 87%이였다. $CO_2$가 분리된 바이오메탄은 초저온액화공정을 이용하여 액화바이오메탄으로 전환시켰다. 이때 초저온액화공정은 Reverse Brayton cycle로 구성하였으며, 냉매로는 질소를 사용하였다. 액화바이오메탄의 생산은 바이오메탄을 등엔트로피과정인 단열팽창을 통하여 $-155{\sim}-159^{\circ}C$의 초저온으로 냉각되는 질소냉매와 열교환기에서 열교환시켜 이루어졌으며 그 생산량은 $3.46m^3$/day(1bar, $-161^{\circ}C$)이었다.
This paper reports the study on coking rate and carbon formation route as a function of reaction temperature using the Ni catalysts in the $CO_2$ reforming of methane. In this paper, carbon deposition on catalysts and its kinetics during reforming reaction were studied by using a thermogravimetric analyzer. Kinetic studies show that reaction orders of carbon formation obtained 1.33 ($CH_4$) and -0.52 ($CO_2$) by experiments on partial pressure of reactant gas, respectively. On the basis of model equation, the kinetic parameters for the coking reaction at different temperatures indicated that methane decomposition dominated carbon formation at lower temperatures ($<600^{\circ}C$), while $CH_4$decomposition and Boudouard reactions become significant for coking in the temperature range of $600{\sim}700^{\circ}C$.
Park, Seong-Bum;Sung, Hyun-Je;Shim, Dong-Min;Kim, Nack-Joo
Journal of Energy Engineering
/
v.23
no.2
/
pp.62-73
/
2014
This research was focused to apply response surface methodology for optimization of bio-methane production by biogas upgrading process. Methane concentration(Y1) and methane efficiency(Y2) on biogas upgrading process were mathematically described as being modeled by the use of the Box-Behnken design on response surface methodology. The results of ANOVA(analysis of variance) about models, the probability value of the methane concentration and methane recovery response surface model are 0.0001 and 0.0001, respectively and coefficient of determination($R^2$) are 0.9788 and 0.9710, respectively. The response surface model is proved of high reliability and suitability. The operation pressure had the greatest influence to methane concentration than other operation parameters and the PSA rotary valve velocity had the greatest influence to methane recovery than other operation parameters. Optimal condition of biogas upgrading process for production of $100Nm^3/hr$ bio-methane were operation pressure 8.0bar and outlet flow rate 31.55RPM, respectively. At that operation condition the methane concentration of bio-methane was 97.13% and methane recovery in biogas upgrading process was 75.89%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.