• Title/Summary/Keyword: 메탄/공기

Search Result 180, Processing Time 0.026 seconds

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성)

  • Cho, Seo-Hee;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.8-16
    • /
    • 2019
  • One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.

Performance Analysis of Methanol Fueled Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (메탄올 연료형 SOFC/GT 하이브리드시스템의 성능 평가)

  • Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Kil, Byung-Lea;Park, Sang-Kyun;Kim, Mann-Eung;Lee, Kyung-Jin;Oh, Jin-Suk;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1040-1049
    • /
    • 2010
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. The purpose of this work is to predict the performance of methanol fueled SOFC/GT hybrid power system and to analyze the influence of operating temperature of stack, current density of stack, pressure ratio of turbine, temperature effectiveness of recuperator, turbine inlet temperature.

Influence of Changing Combustor Pressure on Combustion Characteristics and Local Reaction Intensity in the CH4/Air Flames (메탄/공기 화염에서 연소실 압력변동이 연소특성과 국소 반응강도에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.365-372
    • /
    • 2009
  • The influence of combustor pressure on the local reaction characteristics of $CH_4$/air flames was investigated by measurements of local chemiluminescence intensity. Induced flow flames are often applied to the industrial boiler systems and incinerator in order to improve heat transfer and prevent exhaust gas leakage. In order to investigate combustion characteristics in the induced flow pattern, the combustor pressure index($P^*$) was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio in the present combustion system, where $P^*$ is defined as the ratio of absolute pressure to atmospheric one. Relationship between local reaction intensity and pressure index have been investigated by simultaneous $CH^*$, $C^*_2$ and $OH^*$ intensity measurements. It could be observed that flame length became longer with decreasing $P^*$ from $CH^*$ chemiluminescence intensity of axial direction. The mean value of $C^*_2$ and $CH^*$ chemiluminescence intensities, which indicates reaction intensity in the $CH_4$/air flames, decreased with decreasing pressure index for ${\Phi}{\leq}1$, but increased with decreasing pressure index for ${\Phi}$>1. $C^*_2/CH^*$ intensity ratio, which can be a good marker to demonstrate local equivalence ratio, was almost same for ${\Phi}{\leq}1$ regardless of pressure index change, while they showed high level for lower pressure index for ${\Phi}$>1 conditions.

An Experimental Study of Acoustic Excitation Effect on Blowoff Mechanism for Premixed Flame (예혼합 화염 날림 메커니즘에 음향 가진이 미치는 영향에 대한 실험적 연구)

  • Shin, Jaeik;Jeong, Chanyeong;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1004-1012
    • /
    • 2014
  • In this study, blowoff was investigated in a ducted combustor with the bluff body when acoustic excitation was forced. To observe the flame structure, OH radical chemiluminescence was used and the image was analyzed by using POD (Proper Orthogonal Decomposition) algorithm. Natural gas mainly composed of methane was used as fuel. Blowoff occurred when the equivalence ratio was reduced. Equivalence ratio causing blowoff was measured by changing air flow rate, excitation frequency and sound pressure. Blowoff equivalence ratio was varied depending on the experimental conditions. Vortex frequency behind the bluff body and resonance effect in combustor are the main factors that affect the blowoff equivalence ratios with the excitation.

The Study of Effects of Variable Parameters on Flame Structure and NOx Emission in Methane/Air Laminar Partially Premixed Flames (메탄/공기 층류 부분 예혼합화염에서 예혼합 정도에 따른 화염구조와 질소산화물의 배출에 미치는 영향에 관한 연구)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.362-367
    • /
    • 2003
  • It is shown that the effect of variable parameters on flame structures and NOx emissions in the laminar partially premixed methane-air flames with a co-axial Bunsen burner. Objectives of this paper is to understand the effects of flow variables on NOx emissions and the flame structure with OH chemiluminescence, including reconstructed image by abel inversion processing at each conditions. A fuel flowrate of 200 [cc/min] was fixed and the amount of air was varied from 400 to 1200 [cc/min]. The experimental variables were equivalence ratio(${\Phi}$ fuel split percentage(${\sigma}$ and inner tube recess(x/D). Flow conditions were ranged from $1.36{\sim}4.76$(equivalence ratio), $50{\sim}100$(fuel split percentage) and $0{\sim}20$(inner tube recess). NOx analyzer and ICCD camera with a OH filter were used as a main experimental apparatus. In addition, Abel inversion, which is a kind of tomography and valuable to estimate a two-dimensional structure of co-axial flames from cubical information, was employed for combustion diagnostics. Results from this study indicate that the main effects depend on equivalence ratio and next sigma, x/D for NOx production and OH formation. Throughout Abel inversion, we could affirm the maximum position and the tendency of OH radical intensity by variants at five axial heights above the burner exit.

  • PDF

A Study on Flame Structure and NO Emission in FIR- and FGR-applied Methane-air Counterflow Diffusion Flames (FIR과 FGR 기법이 적용된 메탄-공기 대향류 확산화염에서 화염구조와 NO 배출 연구)

  • Park, Jeong;Kwon, Oh Boong;Kim, Sewon;Lee, Changyeop;Keel, Sang-In;Yun, Jin-Han;Lim, In Gweon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2016
  • Flame characteristics and NO emission behavior in $CH_4$/air-air premixed counterflow flames with applying FIR and FGR with $CO_2$ and $H_2O$ were investigated numerically by varying the ratios of FIR and FGR as well as global strain rate. Chemical effects of added $CO_2$ and $H_2O$ via FIR and FGR were analyzed through comparing flame characteristics and NO behaviors from real species($CO_2$ and $H_2O$) with those from their artificial species($XCO_2$ and $XH_2O$) which have the same thermochemical, radiative, and transport properties to those for the real species. The results showed that flame temperature and NO emission with FIR varied much more sensitively than that with FGR. Those varied little irrespective of adding $CO_2$, $H_2O$, and their artificial species to the fuel stream via FIR. However, Those were varied complicatedly by chemical effects of added $CO_2$ and $H_2O$ via FGR. Detailed analyses for them were made and discussed.

The Optimum of $CO_2$ Decomposition using Spinel Phase Magnetite (스피넬상 마그네타이트를 이용한 $CO_2$ 분해의 최적조건)

  • Ryu, Dae-Sun;Hong, Phil-Sun;Lee, Poong-Hun;Kim, Soon-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.901-907
    • /
    • 2001
  • Magnetite was synthesized using $0.2M-FeSO_4{\cdot}7H_{2}O$ and 0.5 M-NaOH by air oxidation method for carbon dioxide decomposition to carbon. The carbon dioxide decomposition was successfully carried out after reduction of ${Fe_3}{O_4}$ for 2 hrs using hydrogen gas. The carbon dioxide decomposition at 325, 350, 375, 400, $425^{\circ}C$, 88% was the highest at $350^{\circ}C$ and the activation energy of ${Fe_3}{O_4}$ in carbon dioxide decomposition was 30.96 kJ/mol. After $CO_2$ decomposition, the carbon of surface of catalyst reacted with hydrogen produced methane.

  • PDF

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed CH4/Air Flames: Effects of Fuel Split Percentage and Mixing Distance (메탄/공기 층류 부분예혼합화염의 화염구조와 NOx 배출특성 : 연료분배율과 혼합거리의 영향)

  • Jeong, Yong-Ki;Lee, Jong-Ho;Lee, Suk-Young;Jeon, Chung-Hwan;Chan, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.818-825
    • /
    • 2004
  • In this paper, the study of effects of flow parameters on flame structure and NOx emission concentration was performed in co-axial. laminar partially premixed methane/air flames. Such (low parameters as equivalence ratio(${\Phi}$), fuel split percentage($\sigma$), and mixing distance(x/D$\_$i/) were defined as a premixing degree and varied within ${\Phi}$=1.36∼9.52, $\sigma$=50∼100, and x/D$\_$i/=5∼20. The image of OH$\^$*/ and NOx concentration were obtained with an ICCD camera and a NOx analyzer. The flame structure observations show a categorization of partially premixed flames into three distinct flame regimes corresponding to ${\Phi}$<1.7(premixed flame structure), 1.7<${\Phi}$<3.3(hybrid structure), and ${\Phi}$>3.3(diffusion flame structure existing a luminous sooting region) at $\sigma$=75%, and x/D$\_$i/=10. As o decreases from 100% to 50%, and x/D$\_$i/ decreases, nonpremixed flame structure appear at low equivalence ratio relatively. In addition, the measured emissions for NOx rise steeply from ${\Phi}$=1.7, to ${\Phi}$=3.3, then constants ${\Phi}$>4.76. NOx emissions decrease with increase the level of premixing level. In conclusion, the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split percentage($\sigma$), and finally mixing distance(x/D$\_$i/).

How to Prepare the Manuscript for Submission to the Proceedings of KSPE Conference (비예혼합화염과 예혼합화염의 속도 섭동에 따른 응답 특성)

  • Ahn, Myunggeun;Kim, Taesung;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.612-616
    • /
    • 2017
  • An experimental study investigates the flame response characteristics of non-premixed flame and premixed flame. Air was used as the oxidant. Hydrogen($H_2$)/methane($CH_4$) was used as the fuel, and the mixing ratio of the fuel was 50/50%. Flame response characteristics for various velocity perturbations were experimented. The flame images was acquired using the OH fluorescence measurement and the images were digitized using MatLab code. The results of the premixed flame show that flame perturbation increases as the oscillation amplitude increases. As the amplitude increases, the gain value of the flame transfer function is observed to be a linear behavior. The flame length of a nonpremixed flame decreases as the oscillation amplitude increases. Also, it was confirmed that the gain value according to the amplitude behaves nonlinearly.

  • PDF

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.