• Title/Summary/Keyword: 메타 휴리스틱 기법

Search Result 63, Processing Time 0.027 seconds

Application of data preprocessing to improve the performance of the metaheuristic optimization algorithm-deep learning combination model (메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 성능 개량을 위한 데이터 전처리의 적용)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.114-114
    • /
    • 2022
  • 딥러닝의 학습 및 예측성능을 개선하기 위해서는 딥러닝 기법 내 연산과정의 개선과 함께 학습 및 예측에 사용되는 데이터의 전처리 과정이 중요하다. 본 연구에서는 딥러닝의 성능을 개량하기 위해 제안된 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형과 데이터 전처리 기법을 통해 댐의 수위를 예측하였다. 수위예측을 위해 Multi-Layer Perceptron(MLP), 메타휴리스틱 최적화 알고리즘인 Harmony Search(HS)와 딥러닝을 결합한 MLP using a HS(MLPHS) 및 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)와 딥러닝을 결합한MLP using a EBHS-CGS(MLPEBHS)를 통해 댐의 수위를 예측하였다. 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 학습 및 예측성능을 개선하기 위해 학습 및 예측을 위한 자료를 기반으로 데이터 전처리기법을 적용하였다. 적용된 데이터 전처리 기법은 정규화, 수위구간별 사상(Event)분리 및 수위 변동에 대한 자료의 구분이다. 수위예측을 위한 대상유역은 금강유역에 위치한 대청댐으로 선정하였다. 대청댐의 수위예측을 위해 대청댐 상류에 위치하는 수위관측소 3개소를 선정하여 수위자료를 취득하였다. 각 수위관측소에서 취득한 수위자료를 입력자료로 설정하였으며, 대청댐의 수위자료를 출력자료로 설정하여 메타휴리스틱 최적화 알고리즘-딥러닝 모형의 학습을 진행하였다. 각 수위관측소 및 대청댐에서 취득한 수위자료는 2010년부터 2020년까지 총 11년의 일 단위 수위자료이며, 2010년부터 2019년까지의 자료를 학습자료로 사용하였으며, 2020년의 자료를 예측 및 검증자료로 사용하였다.

  • PDF

Constraint Directed Course Scheduling in Meta-Programming (메타프로그래밍 제어를 통한 제약 중심의 코스 스케줄링에 관한 연구)

  • 정종진;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.111-122
    • /
    • 1995
  • 전통적으로 스케줄링 문제를 해결하기 위해 LP(Linear Programming) 기법이 주로 적용되어 왔으나, 스케줄링 문제의 많은 자원과 지식, 제약조건의 복잡한 상관 관계를 LPrl법으로 표현하고 처리하기가 쉽지 않다. 따라서 최근에는 AI 기법을 스케줄링 문제에 많이 적용하고 있고, AI 기법은 지식 표현 및 휴리스틱을 다루기에 효과적이므로 문제를 모델링하고 해결하는데 용이하다 할 수 있다. 본 논문에서는 AI 기법을 기반으로 하여 스케줄링에 적합한 휴리스틱 및, 탐색기법, 지식표현 방법등을 연구하고, 이를 바탕으로 코스 스케줄링 시스템을 구현하였다. 먼저 시스템은 전체적으로 메타프로그래밍을 통하여 초기 스케줄링(initial scheduling)과 동적스케줄링 (reactive scheduling)을 수행하도록 하였다. 메타프로그램이 초기 스케줄링을 수행할때에는 휴리스틱과 자체적인 도메인 여과기법을 적용하여 탐색 공간의 불일치 요소(inconsistency)를 제거시킴으로써 백트랙킹의 발생을 최소화시켰다. 또한 초기 스케줄링의 결과를 가지고 메타프로그래밍이 동적 재스케줄링을 수행할때에는 제약조건을 통한 휴리스틱을 이용하여 초기해에 대한 조정을 최소화할 수 있는 메카니즘을 제시하였다. 이에 대한 적용 결과는 실험을 통하여 기존의 논리 언어가 제공하는 탐색 알고리즘과 비교하고 분석하였다.

  • PDF

A Parallel and Distributed Meta-heuristic Framework (병렬 분산 메타-휴리스틱 프레임워크)

  • Kim, Jin-Woo;Oh, Hyun-Ok;Ha, Soon-Hoi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.21-24
    • /
    • 2011
  • 본 논문은 확장성(scalability)과 견고함(robustness)을 강조하는 새로운 형태의 병렬 분산 메타-휴리스틱 프레임워크를 제안하고 있다. PADO (Parallel And Distributed Optimization framework) 라고 이름 지어진 본 프레임워크는 이종의 계산 및 통신 자원들을 활용하여 메타-휴리스틱 알고리즘을 병렬화하고 스케일러블한 속도 향상을 얻을 수 있다. 본 프레임워크는 기존의 시퀀셜(sequential) 최적화 프레임워크에 메타-휴리스틱 알고리즘의 병렬화 기법중 하나인 island 모델을 개선하여 구현하였다. 본 연구는 부분적으로 정렬된 지식 공유 방법(Partially Ordered Knowledge Sharing) 모델을 이용하여 병렬 환경 코디네이션(coordination) 오버헤드를 줄였고 계산 노드에 대한 확장성을 얻었다. 본 프레임워크를 통해 기존의 많은 메타-휴리스틱 알고리즘들을 재사용 할 수 있고 다양한 분야의 최적화 문제에 적용 할 수 있으며 계산량이 많은 메타-휴리스틱 알고리즘을 병렬화를 통해 문제를 푸는 시간을 단축 할 수 있다. 순회 판매원 문제(Traveling Salesman Problem)를 통해 프레임워크의 실효성을 검증하였다.

Mine Algorithm : A Metaheuristic Imitating The Action of The Human Being (Mine 알고리즘 : 인간의 행동을 모방한 메타휴리스틱)

  • Ko, Sung-Bum
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.411-426
    • /
    • 2009
  • Most of the metaheuristics are made by imitating the action of the animals. In this paper, we proposed Mine Algorithm. The Mine Algorithm is a metaheuristic that imitates the action of the human being. Speaking of search, the field in which the know-how and the heuristics of the human being are melted best is the mining industry. In the Mine Algorithm we formalize the action pattern of the human being by focusing the mine business. The Mine Algorithm uses various searching techniques fluently and shows equally good performance for broad problems. That is, it has good generality. We show the improved generality of the Mine Algorithm by the comparing experiments with the conventional metaheuristics.

Parallelization of Metaheuristic Algorithms to Solve the Large-scaled Optimization Problem (대규모 최적화 문제의 해결을 위한 메타휴리스틱 알고리즘의 병렬화)

  • 이용환;류광렬
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.435-441
    • /
    • 2002
  • 전력시스템 등, 산업 전반의 많은 분야에 최적화 문제가 산재해 있다. 또한 이러한 최적화 문제를 해결하기 위한 많은 연구가 있었다. 특정 응용에 국한되지 않고 모든 응용에 적용 가능한 메타휴리스틱 알고리즘은 그 중 많은 비중을 차지하고 있으며, 가장 대표적인 방법은 유전알고리즘과 타부 탐색이다. 그러나 최적화 문제에 속하는 많은 문제들이 탐색공간이 방대하고 많은 제약이 존재하는 대규모 최적화 문제로서 기존의 메타휴리스틱 기법들을 그대로 이용해서는 빠른 시간 내에 최적의 해를 찾아내기 힘들다 본 논문에서는 대규모 최적화 문제의 하나인 발전기 기동정지 계획 문제를 해결하기 위하여 유전알고리즘과 타부탐색을 적용하고 그 성능을 분석한다. 그리고 각 방법을 병렬화하여 수행함으로써 병렬화를 통하여 시간상의 이득과 함께 부가 효과로서 집중화와 다각화의 효과를 얻을 수 있음을 보여준다.

  • PDF

Applying Meta-Heuristic Algorithm based on Slicing Input Variables to Support Automated Test Data Generation (테스트 데이터 자동 생성을 위한 입력 변수 슬라이싱 기반 메타-휴리스틱 알고리즘 적용 방법)

  • Choi, Hyorin;Lee, Byungjeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Software testing is important to determine the reliability of the system, a task that requires a lot of effort and cost. Model-based testing has been proposed as a way to reduce these costs by automating test designs from models that regularly represent system requirements. For each path of model to generate an input value to perform a test, meta-heuristic technique is used to find the test data. In this paper, we propose an automatic test data generation method using a slicing method and a priority policy, and suppress unnecessary computation by excluding variables not related to target path. And then, experimental results show that the proposed method generates test data more effectively than conventional method.

Meta Heuristic for Calibration of Scanning Electron Microscope (주사 전자 현미경의 보정작업을 위한 메타 휴리스틱 알고리즘)

  • Lee, Sangwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.535-536
    • /
    • 2011
  • 주사전자현미경은 시편의 표면형상을 수 nm의 정밀도로 관찰할 수 있는 측정 장비로, 과학 기술 및 산업 분야에서 널리 사용되고 있다. 이러한 주사현미경은 30여종 이상의 변수조합에 의해 운영되며, 정상적인 영상을 관찰하기 위해서는 변수를 최적화하는 보정작업을 필요로 한다. 본 논문에서는 이러한 보정작업을 용이하게 하기 위한 메타 휴리스틱 기법을 소개한다.

  • PDF

에이전트 모형 및 메타 휴리스틱을 이용한 인터넷 상점 사용자 편의 기능 평가

  • An, Hyeong-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.247-259
    • /
    • 2008
  • 많은 인터넷 상점들이 다양한 사용자 편의 기능을 제공하고 있다. 이 논문에서는 그러한 편의 기능을 평가하기 위한 새로운 분석 기법을 제시하다. 제시된 기법은 에이전트 기반 모형과 메타 휴리스틱인 evolution strategy를 이용하여 고개들의 행태를 모형화하고 최적화한 후 여러가지 다양한 사용자 편의 기능을 평가해 본다. 이때 평가의 초점은 개인화된 추천 페이지에 두고 이를 인기상품 추천, 카테고리 정렬 등 여러 가지 다른 기능들과 비교해 본다. 이를 위해 가상 인터넷 상점이 구현 되며 데이터셋을 활용하여 시뮬레이션 실험 및 분석이 수행된다. 분석 결과 개인화된 서비스 기능들이 항상 고객들의 쇼핑 효율 및 효과를 항상 높여주지는 않는 것으로 나타났다.

  • PDF

Comparision of metaheuristic methods for generating long-term reservoir operation rule (장기 저수지운영률 도출을 위한 메타휴리스틱 기법의 비교)

  • Kang, Shin-Uk;Lee, Sang-Ho;Kim, Hyeon-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.226-226
    • /
    • 2011
  • 최적 저수지운영을 위한 운영률 도출이나 강우-유출 및 수질 모형의 매개변수 추정 문제처럼 비선형적이고 추정해야할 변수의 수가 많은 경우, 수학적으로 모형화하기에 너무 복잡해서 선형계획법, 비선형계획법, 동적계획법 등을 사용하여 최적해를 구할 수 없는 경우도 있다. 이러한 문제에 대해서는 구조적 진화를 통해 최적해를 구하는 방법들이 사용된다. 일반적으로 미지수의 개수가 많아지면 전역최적해를 찾기가 어려워진다. 전역최적해를 찾는 여러 가지 방법들이 수자원 분야에서는 강우-유출모형의 매개변수를 추정하는데 많이 사용되고 있으며, 특히 유전자 알고리즘, SCE-UA 알고리즘 등 전역최적해를 찾는 메타휴리스틱 방법이 많이 사용되고 있다. 전역최적화 방법을 개발하는 연구자들은 최적화방법의 성능을 평가하기 위해 다양한 검사함수(test function)를 만들어 성능을 평가하고 있다. 본 연구에 사용한 검사함수는 Mishra의 연구(2006a, 2006b)에서 사용한 중요하고 복잡한 검사함수이다. 유전자 알고리즘, SCE-UA 알고리즘, DDS 알고리즘을 검사함수 중 전역해를 찾기 어려운 2 차원 함수 2 가지, 다차원 함수 4 가지 함수에 적용하여 각각의 탐색 성능을 평가하였다. 2차원 함수인 Bukin 함수에 대해서는 모든 최적화 방법이 전역최적해를 찾을 수 없었지만, 유전자 알고리즘이 가장 전역최적해에 가까웠고 다음으로 DDS 알고리즘 순서였다. 지역수렴 영역이 많을 것으로 판단되는 10, 30, 50 차원 Michalewicz 함수에 대해서는 DDS 알고리즘으로 구한 최적해가 전역최적해와 매우 근접하였고 다음으로 SCE-UA 알고리즘, 유전자 알고리즘 순이었다. 지역수렴 영역이 상대적으로 다른 함수보다 넓은 10 차원 Schwefel 함수에 대해서는 DDS 알고리즘으로 구한 최적해가 전역최적해와 거의 근접하였고 유전자 알고리즘과 SCE-UA 알고리즘은 매우 큰 편차를 보였다. 40, 80 차원 Schwefel 함수에 대해서는 3 가지 알고리즘 모두 전역최적해와 편차를 보였지만 DDS 알고리즘에 의한 최적해와 다른 두 알고리즘에 의한 최적해는 1 오더(order) 정도의 차이가 났다. 지역수렴 영역이 큰 Michalewicz 함수와 Schwefel 함수에 대한 결과는 매우 흡사한 결과이다. 이상과 같은 결과로, 유전자 알고리즘은 매개변수의 수가 적을 경우 우수한 탐색성능을 가졌으며, SCE-UA 알고리즘은 Griewank, Rastrigin 함수와 같은 형태인 경우 우수한 성능을 보였다. DDS 알고리즘은 전체적으로 우수한 탐색 능력을 가진 것으로 판단된다. 그러므로 수위구간 영역별 저수지운영률 도출을 위한 적절한 최적화방법으로 DDS 알고리즘을 선정하였다.

  • PDF

Task Scheduling Using Deep Reinforcement Learning in Mobile Edge Computing-based Smart Factory Environment (MEC 기반 스마트 팩토리 환경에서 DRL를 이용한 태스크 스케줄링)

  • Koo, Seolwon;Lim, Yujin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.147-150
    • /
    • 2022
  • 최근 들어 다양한 제약 조건이 있는 스마트 시티나 스마트 팩토리와 같은 도메인들 내에서 태스크들을 효과적으로 처리하기 위해서 MEC 기술이 많이 사용되고 있다. 그러나 이러한 도메인에서 발생하는 복잡하고 동적인 시나리오는 기존의 휴리스틱이나 메타 휴리스틱 기법을 이용하여 해결하기엔 계산 복잡도가 증가하는 문제점을 가지고 있다. 따라서 최근 들어 이러한 문제점을 해결하기 위한 방법 중 하나로 강화학습과 딥러닝이 결합된 DRL 기법이 주목을 받고 있다. 본 연구는 스마트 팩토리 환경에서 종속성을 가진 태스크들이 실행시간과 태스크가 처리되는 MEC 서버들의 로드 표준편차를 최소화하는 태스크 스케줄링 기법을 제안한다. 모의실험을 통하여 제안 기법은 태스크가 증가하는 동적인 환경에서도 좋은 성능을 보임을 증명하였다.