• Title/Summary/Keyword: 메니스커스 제어

Search Result 6, Processing Time 0.01 seconds

메니스커스 측정을 이용한 잉크젯 입력 파형 설계

  • Gwon, Gye-Si;Kim, Jin-Won;Go, Jeong-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.14.2-14.2
    • /
    • 2009
  • 잉크젯의 응용이 넓어 짐에 잉크젯 헤드에서의 잉크 토출을 효과적으로 제어해야되는 이슈가 대두 되고 있다. 이를 위해서는 잉크젯 헤드의 입력전압을 적절하게 인가 해야만 한다. 본 연구에서는 잉크젯 토출 현상을 이해하고 이를 통해 잉크젯 헤드의 최적의 입력 파형을 설계가 가능한 알고리즘을 소개 하려고 한다. 본 연구에서는 토출 현상을 측정하기 위하여 CCD 카메라의 이미지를 사용한 메니스커스 운동을 측정하였다. 측정된 메니스커스 운동은 잉크젯 헤드의 피에조에 인가되는 입력전압에 의해서 야기된 압력파가 노즐에 전달되어 나타나는 현상이다. 따라서 잉크젯 헤드내의 현상 뿐만 아니라 잉크젯 토출 현상의 많은 정보를 가지고 있다. 파형 설계를 위해서 메니스커스 운동의 주기를 측정하여 잉크젯 입력 파형의 최적의 휴지시간 (dwell time)을 결정하는것이 가능하였음을 실험적으로 검증하였다. 또한 메니스커스 운동을 측정 함으로서 설계된 파형을 평가하것도 용이함을 실험적으로 보였다.

  • PDF

Development of Pneumatic Ink Supply System for Electrostatic head on Meniscus control (메니스커스 제어를 위한 정전기력 헤드용 공압 잉크공급장치 개발)

  • Yang, Young-Jin;Ko, Jeong-Beom;Dang, Hyun-Woo;Kim, Hyung-Chan;Choi, Kyung-Hyun;Cho, Kyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.455-460
    • /
    • 2012
  • The Electrostatic Inkjet system has many applications in cost and time effective manufacturing of printed electronics like RFIDs, OLEDs and flexible displays etc. This paper presents pneumatic ink supply system for an electrohydrodynamic deposition (EHD) setup for the precise pressure control to produce a small amount of discharge at the end of the capillary. The meniscus shape depends upon the applied pneumatic pressure to the ink supply system. Furthermore, this paper also compares meniscus shapes at different applied pneumatic pressures. It is concluded that patterning of constant line-width can be achieved better by controlling the meniscus shape using this technique.

Implementation on the Portable Blood Gas Analyzer and Performance Estimation/A Study on the Hydrometer Calibration System using Image Processing (영상처리 기법을 이용한 부액계 자동 교정 시스템 구현)

  • Lee, Yong-Jae;Chang, Kyung-Ho;Oh, Chae-Youn;Jung, Sang-Duk
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.258-264
    • /
    • 2003
  • The present paper studies how to calibrate hydrometer using image process. The method aligns particular scales of hydrometer selected for calibrating the hydrometer with the horizontal plane of the reference liquid automatically without man's operation. Major parts composing the system are CCD camera, frame grabber, stepping motor and image process program. The image process program is composed of a part that locates the meniscus and aligns it with a scale and a part that controls the step motor. To verify the performance of the developed method, this study compares the meniscus and scale observed directly with the naked eye with the result of calibration by the manual calibration method. The differences between the corrections were less than $0.004\;kg/m^3$ with uncertainty of $0.06\;kg/m^3$. These showed that the calibration results of the developed hydrometer calibration using image process nearly equal to manual method.

On-demand electrohydrodynamic printing with meniscus controls by a piezoelectric actuator (압전 액츄에이터의 메니스커스 제어를 통한 온 디멘드(On-demand) 전기 수력학 프린팅)

  • Kim, Y.J.;Kim, D.H.;Hwang, J.H.;Kim, Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2009.06a
    • /
    • pp.351-352
    • /
    • 2009
  • On-demand ejection of ultra-fine droplets that uses both electrohydrodynamic (EHD) force and mechanical actuation is presented. The liquid meniscus was controlled by a piezoelectric actuator and droplets were ejected by EHD force. Through these effects, it was possible to obtain a high operational jetting frequency of 5kHz with a short delay-time (about 50 us) when compared with existing on-demand EHD jetting methods, such as the pulsating jet mode (3-10 msec) and the pulsed-voltage cone-jet mode(3.6 msec). Also, we obtained ultra-fine droplets at a volume that was at the femto-liter level simultaneously. The jetting characteristics were examined for both hydrophobicity and hydrophilicity of the surface of a capillary.

  • PDF

Autogenous Shrinkage of High-Performance Concrete Containing Mineral Admixture (광물질 혼화재를 함유한 고성능 콘크리트의 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Yong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.19-31
    • /
    • 2007
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio and containing fly ash and blast furnace slag. Internal humidity change and shrinkage strain were about 10%, 10%, 7%, 11%, 11% and $320{\times}10^{-6}$, $270{\times}10^{-6}$, $231{\times}10^{-6}$, $371{\times}10^{-6}$, $350{\times}10^{-6}$ respectively on OPC30, O30F10, O30F20, O30G40, O30G50 and from the results, fly ash made humidity change and strain decrease but slag increase comparing with ordinary portland cement. Considering only relation internal humidity and shrinkage by self-desiccation, humidity change and shrinkage represented the strong linear relation regardless of mineral admixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

Relation between Autogenous Shrinkage of Concrete and Relative Humidity, Capillary Pressure, Surface Energy in Pore (공극 내 상대습도, 모세관압력, 표면에너지 변화에 따른 콘크리트 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio. Internal humidity change and shrinkage strain were about 10%, 4% and $320\times10^{-6}$, $120\times10^{-6}$ respectively on concrete with water binder ratio 0.3, 0.4 and from the results, humidity change and shrinkage represented the strong linear relation regardless of mixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20 nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.