Autogenous Shrinkage of High-Performance Concrete Containing Mineral Admixture

광물질 혼화재를 함유한 고성능 콘크리트의 자기수축

  • 이창수 (서울시립대학교 공과대학 토목공학과) ;
  • 박종혁 (서울시립대학교 대학원 토목공학과) ;
  • 김용혁 (서울시립대학교 대학원 토목공학과) ;
  • 김영욱 (서울시립대학교 대학원 토목공학과)
  • Published : 2007.08.31

Abstract

Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio and containing fly ash and blast furnace slag. Internal humidity change and shrinkage strain were about 10%, 10%, 7%, 11%, 11% and $320{\times}10^{-6}$, $270{\times}10^{-6}$, $231{\times}10^{-6}$, $371{\times}10^{-6}$, $350{\times}10^{-6}$ respectively on OPC30, O30F10, O30F20, O30G40, O30G50 and from the results, fly ash made humidity change and strain decrease but slag increase comparing with ordinary portland cement. Considering only relation internal humidity and shrinkage by self-desiccation, humidity change and shrinkage represented the strong linear relation regardless of mineral admixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

플라이 애쉬와 고로슬래그를 함유하고 물-결합재비가 낮은 고성능 콘크리트의 자기건조에 의한 습도감소와 수축과의 연관성을 파악하기 위하여 내부 습도와 변형률을 측정하였다. 그 결과 일반 콘크리트 내부 습도 감소는 약 10% 수축변형률은 약 $320{\times}10^{-6}$까지 진행하였으며 플라이 애쉬 10%, 20% 혼입한 콘크리트의 경우 각각 10%, 7%의 습도 감소와 $274{\times}10^{-6}$, $231{\times}10^{-6}$의 변형률을 나타내었다. 고로슬래그 40%, 50%를 혼입한 콘크리트는 11%, $371{\times}10^{-6}$, O30G50은 11%, $350{\times}10^{-6}$의 습도감소와 수축 변형률을 나타내었으며 플라이 애쉬 혼입 콘크리트는 일반 콘크리트에 비해 습도 감소량과 변형률이 감소하며 고로슬래그 혼입 콘크리트는 증가하는 경향을 보였다. 자기수축의 경우 내부 습도와 변형률의 관계만을 고려할 때 플라이 애쉬, 고로슬래그 혼입 유무에 상관없이 모두 습도와 변형률은 강한 선형성을 보였다. 콘크리트 내부 습도 변화와 수축변형률의 관계를 보다 구체화하기 위하여 콘크리트 내부 공극을 단일 네트워크로 가정하고 확장 메니스커스 생성 가정 하에 공극수에서 발생하는 모세관 압력과 수화조직체에서 발생하는 표면에너지 변화를 습도의 함수로 모델링하여 수축의 구동력으로 작용시킨 결과 실험값과 비교적 일치하는 값을 나타내었다. 이를 근거로 물-결합재비가 낮은 고성능 콘크리트에서 자기건조에 의한 습도감소는 20nm이하의 소형공극에서 발생함을 파악할 수 있었으며 따라서 자기수축에 대한 제어 방안은 이러한 소형공극에서의 공극수 표면장력과 포화도에 초점을 맞추어야 함을 확인할 수 있었다.

Keywords

References

  1. 고경택, 박정준, 이종석, 김도겸(2003) . '광물질 흔화재를 사용한 고성능 콘크리트의 수축특성.' 대한 토목학회논문집. 23권. 6A호. pp.1133-1141
  2. Bazant, Z. P. (1970), 'Constitutive Equations for Concrete Creep and Shrinkage Based on Thermodynamics of Multiphass Systems,' Materials and Structures, Vol. 3, No. 13, pp.2-36
  3. Bazant, Z. P. (1972), 'Thermodynamics of Hindered Adsorption and its Implication for Hardened Cement Paste and Concrete.' Cement and Concrete Research, Vol. 2, pp.1-16 https://doi.org/10.1016/0008-8846(72)90019-1
  4. Beltzung, F., Wittmann, F. H. (2005), 'Role of Disjoining Pressure in Cement Based Materials,' Cement and Concrete Research, Vol. 35, pp.2364-2370 https://doi.org/10.1016/j.cemconres.2005.04.004
  5. Bentz, D. P., Garboczi, E. J., and Quenard, D. A (1998), 'Modeling of Drying Shrinkage in Reconstructed Porous Materials : Application to Porous Vicour Glass,' Mod Simul. Mat. Sci. Eng., Vol. 6, pp.211-232 https://doi.org/10.1088/0965-0393/6/3/002
  6. CEB-FIP(1990) , CEB-FIP Model Code 90 for Concrete Structures, Comite Euro-International du Beton, Lausanne
  7. Ferraris, C. F. (1987), 'Shrinkage Mechanisms of Hardened Cement Paste,' Cement and Concrete Research, Vol. 17, pp.453-464 https://doi.org/10.1016/0008-8846(87)90009-3
  8. Garwin, D., Schrefler B. A (1996), 'ThermoHydro- Mechanical Analysis of Partially Saturated Porous Materials,' Engineering Computations, Vol. 7, pp.113-143
  9. Hansen, W. (1987), 'Drying Shrinkage Mechanisms in Portland Cement Paste.' Journal of American Ceramic Society, Vol. 70, No.5, pp.323-331 https://doi.org/10.1111/j.1151-2916.1987.tb05002.x
  10. Hua, C. Acker, P., Ehrlacher, A(1995), Analysis and Models of the Autogenous Shrinkage of Hardening Cement Paste, Cement and Concrete Research, Vol. 25, No. 7, pp.1457-1468 https://doi.org/10.1016/0008-8846(95)00140-8
  11. Hua, C. Acker, P., Ehrlacher, A(1995), Analysis and Models of the Autogenous Shrinkage of Hardening Cement Paste, Cement and Concrete Research, Vol. 25, No. 7, pp.1457-1468 https://doi.org/10.1016/0008-8846(95)00140-8
  12. Jensen, O. M., Lura, P. (2006) ,'Techniques and Materials for Internal Water Curing of Concrete,' Meterisls and Structures, Vol. 39, No.9, pp.817-825 https://doi.org/10.1617/s11527-006-9136-6
  13. Jiang, Z., Sun, Z., Wang, P. (2005), 'Autogenous Relative Humidity Change and Autogenous Shrinkage of High-Performance Cement Paste,' Cement and Concrete Research, Vol. 35, pp, 1539-1545 https://doi.org/10.1016/j.cemconres.2004.06.028
  14. Klemen, K. (2005), Physics of Surfaces and Interfaces, GPL
  15. Kovler, K., Zhutovsky, S. (2006), 'Overview and Future Trends of Shrinkage Research,' Meterisls and Structures, Vol. 39, No.9, pp.827-847 https://doi.org/10.1617/s11527-006-9114-z
  16. Lee, K. M., Lee, H. K., Lee, S. H., Kim, G. Y. (2006), 'Autogenous Shrinkage of Concrete Containing Granulated Blast-Furnace Slag,' Cement and Concrete Research, Vol. 36, pp.1279-1285 https://doi.org/10.1016/j.cemconres.2006.01.005
  17. Lura,P.,Jensen,O. M.,van Breugel,K. (2003), 'Autogenous Shrinkage in High Performance Cement Paste : an Evaluation of Basic Mechanisms,' Cement and Concrete Research, Vol. 33, pp.223-232 https://doi.org/10.1016/S0008-8846(02)00890-6
  18. Lura,P.,Jensen,O. M., Igarashi,S. I. (2006) , 'Experimental Observation of Internal Water Curing of Concrete,' Materials and Structures, Vol. 40, No.2, pp.211-220 https://doi.org/10.1617/s11527-006-9132-x
  19. Maekawa K., Ishida T., Kishi T. (2003),Multi -scale Modeling of Concrete Performance Integrated Material and Structural Mechanics, Journal of Advanced Concrete Technology,Vol. 1, No.2,pp.91-126 https://doi.org/10.3151/jact.1.91
  20. Mindess,S.,Young,J. F.,Darwin,D.(2003),' Concrete,' Prentice-Hall Inc.
  21. Nikolai, V. C., Gerhard,S., Jurge, A. (2000),' Isotherms of Capillary Condensation Influenced by Formation of Adsorption Films,' Journal of Colloid and Interface Science, Vol. 221, pp.246-253 https://doi.org/10.1006/jcis.1999.6592
  22. NISTIR 6295(1999),Curing of High Performance Concrete : Report of the State of the art, United states Department of Commerce Technology Administration.
  23. Pane,1. (2001), Hydration Kinetics and Thermomechanics of Blended Cement Systems, Ph.D thesis, University of Michigan
  24. Persson,B. (1997) ,' Self-desiccation and its Importance in Concrete Technology,' Materials and Structures, Vol. 30, pp. 293-305 https://doi.org/10.1007/BF02486354
  25. Radiv, F. (1974),' Moisture Transport in Microporous Substances,' Journal of Materials Science, Vol. 9, pp.744-752 https://doi.org/10.1007/BF00761794
  26. Ribeiro,A. B.,Goncalves A.,Carrajora,A. (2006) ,'Effect of Shrinkage Reducing Admixtures on the Pore Structures Properties of Mortars,' Materials and Structures,Vol. 39,No.2,pp.159-166
  27. Termkhajajornkit,P.,Nawa,T.,Nakai,M.,Saito,T. (2005), 'Effect of Fly Ash on Autogenous Shrinkage,' Cement and Concrete Research. Vol. 35,pp.473-482 https://doi.org/10.1016/j.cemconres.2004.07.010
  28. Weiss,W. J.,Shah,S. P. (2002), 'Restrained Shrinkage Cracking : the Role of Shrinkage Reducing Admixtures and Specimen Geometry,' Materiels and Structures, Vol. 35, pp.85-91 https://doi.org/10.1617/13799
  29. Xi,Y., Bazant,Z. P., Molina, L., Jennings, H. M. (1994), 'Moisture Diffusion in Cementitious Materials,' Advn. Cem. Bas. Mat.,Vol. 1, pp. 258-266 https://doi.org/10.1016/1065-7355(94)90034-5
  30. Yang,Q. B.,Zhang,S. Q. (2004),'Self-Desiccation Mechanism of high-Performance Concrete,' Journal of Zhejiang University Science, Vol. 5, No. 12 , pp.1517-1523 https://doi.org/10.1631/jzus.2004.1517