본 논문에서는 뎁스 카메라를 이용하여 사용자 수에 상관없이 사용자의 머리를 추적하는 방법에 대해 제안한다. 제안된 방법은 색상 정보를 제외한 뎁스 정보만을 이용하여 머리를 추적하고, 각각의 사용자에 따라 뎁스 이미지 형태가 다르게 나오는 머리를 실험적 데이터를 통하여 추적한다. 제안된 방법은 카메라의 종류에 상관없이 머리를 추적이 가능하다.
본 논문에서는 깊이 카메라를 이용하여 사용자 수에 상관없이 사용자의 머리를 추적하는 방법에 대해 제안한다. 제안된 방법은 색상 정보를 제외한 깊이 정보만을 이용하여 머리를 추적하고, 각각의 사용자에 따라 깊이 이미지 형태가 다르게 나오는 머리를 실험적 데이터를 통하여 추적한다. 또한 제안된 방법은 카메라의 종류에 상관없이 머리를 추적할 수 있다는 장점이 있다. 본 논문에서는 Microsoft사의 Kinect for Window와 SoftKinetic사의 DS311을 실험을 진행하였다.
본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다. 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다. 따라서 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였다. GRNN을 사용함으로써 매핑기능은 원활하게 할 수 있었고, 머리의 움직임은 시선 매핑 기능에 의해 적절하게 시선추적에 반영되어 얼굴의 움직임이 있는 경우에도 시선추적이 가능토록 하였고, 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참여하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90% 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.
머리의 자세 및 움직임 추적은 응시추적 및 시각운율 연구에서 필수적이다. 일반적으로 머리자세를 추정하는 방법은 보정된 카메라를 통해 추출된 얼굴의 특징점 정보를 이용한다. 그러나 실제 응용 분야에서는 보정되지 않은 카메라를 통한 머리 움직임을 추정해야 할 경우가 발생한다. 이에 따라 본 논문에서는 보정되지 않은 하나의 카메라를 이용, 단일특징점 정보를 이용한 머리 자세 추정 방법을 확장하여 최적화 기법을 도입한 다특징점 정보 기반 머리 자세 추정방법에 대하여 논하였다.
본 연구는 머리 추적 기술을 이용하여 파노라마 뷰어를 제어하는 새로운 방법을 제시한다. 360도 전방위로 녹화된 파노라마 비디오를 사용자의 머리를 추적하여 영상의 좌 우 회전, 위 아래 회전, 그리고 줌인/아웃이 가능하게 하며, 이는 사람의 관심 여부에 따라 머리가 움직이는 인간의 자연스러운 모습을 적용하여 쉽고 직관적인 제어가 가능하도록 한다. 실제 2009년 한국시리즈 야구 경기를 파노라마 카메라로 녹화하여 실험에 적용하여 실사용성을 확인하였다.
본 논문은 위성의 자세정보를 획득하는 센서로서 과학기술위성2호에 장착하기 위해 개발 중인 이중 머리 별 추적기를 소개한다. 대부분의 별 센서는 위성의 한쪽 방향만 지향하기 때문에 태양 및 지구 영역으로 지향할 경우 별 인식이 불가능하다. 그래서 시스템은 두개의 카메라를 직각의 방향으로 지향하여 동시에 두개의 영상을 입력 받고 하나의 영상에서 별 인식을 실패할 경우 다른 영상에서 별 인식을 수행하여 별 인식률을 높이도록 구현하였다. 논문에서는 이중머리 별 추적기의 시험모델을 소개하고 별 인식 및 별 추적 알고리즘을 제안하였다.
본 논문에서는 복잡한 배경에서의 사람의 머리 추적에 있어서 효과적인 Adaptive Boosting에 의한 방법을 제안한다. 하나의 특징 추출 방법은 사람의 머리를 모델링하기에는 부족하다. 따라서 본 연구에서는 여러 가지 특징 추출 방법을 병행하여 정확한 머리 검출을 시도하였다. 머리 영상의 특징 추출은 sub-region과 Haar 웨이블릿 변환(Haar wavelet transform)을 이용하였다. Sub-region은 머리의 지역적인 특징을 나타내고, Haar 웨이블릿 변환은 얼굴의 주파수 특성을 나타내기 때문에 이들을 이용하여 특징을 추출하면 효과적인 모델링이 가능해 진다. 실시간으로 입력되는 영상에서 사람의 머리를 추적하기 위하여 제안하는 방법에서는 3가지 형태의 Harr-wavelet 특징을 AdaBoosting 알고리즘으로 학습한 후 결과를 이용하였다. 원래 AdaBoosting 알고리즘은 학습시간이 매우 길며 학습데이터가 변하면 다시 학습을 수행해야 하는 단점이 존재한다. 이 단점을 극복하기 위하여 제안하는 방법에서는 캐스케이드를 이용한 AdaBoosting의 효율적인 학습방법을 제안한다. 이 방법은 머리 영상에 대한 학습시간은 감소시키며, 학습데이터의 변화에도 효율적으로 대처할 수 있다. 이 방법은 학습과정을 레벨별로 분리한 후 중요도가 높은 학습데이터를 다음 단계에 반복적으로 적용시킨다. 제안하는 방법이 적은 학습 시간과 학습 데이터를 사용해서 우수한 성능을 가지는 분류기를 생성하였다. 또한, 이 방법은 다양한 머리데이터를 가진 실시간 영상데이터에 적용한 결과 다양한 머리를 정확하게 검출 및 추적하였다.
본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다. 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다. 따라서 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였다. GRNN을 사용함으로써 매핑기능은 원활하게 할 수 있었고, 머리의 움직임은 시선 매핑 기능에 의해 적절하게 시선추적에 반영되어 얼굴의 움직임이 있는 경우에도 시선추적이 가능토록 하였고, 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참여하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90%, 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.
본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다 따라서 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였다. GRNN을 사용함으로써 매핑기능은 원활하게 할 수 있었고, 머리의 움직임은 시선 매핑 기능에 의해 적절하게 시선추적에 반영되어 얼굴의 움직임이 있는 경우에도 시선추적이 가능토록 하였고, 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참석하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90%, 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.
본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다. 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다. 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였고 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참여하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90%, 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.