• Title/Summary/Keyword: 맥상

Search Result 108, Processing Time 0.025 seconds

Mesothermal Gold Vein Mineralization of the Seolhwa Mine: Fluid Inclusion and Sulfur Isotope Studies (설화 광산의 중열수 금광화작용: 유체포유물 및 황동위원소 연구)

  • Yun, Seong-Taek;So, Chil-Sup;Choi, Seon-Gyu;Choi, Sang-Hoon;Heo, Chul-Heo
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.278-291
    • /
    • 2001
  • Mesothermal gold vein minerals of the Seolhwa mine were deposited in a single stage of massive quartz veins which filled the mainly NE-trending fault shear zones exclusively in the granitoid of the Gyeonggi Massif. The Seolhwa mesothermal gold mineralization is spatially associated with the Jurassic granitoid of 161 Ma. The vein quartz contains three main types of fluid inclusions at 25$^{\circ}$C: 1) low-salinity (< 5 wt.% NaCl), liquid CO$_{2}$-bearing, type IV inclusion; 2) gas-rich (> 70 vol.%), aqueous type II inclusions; 3) aqueous type I inclusions (0${\sim}$15 wt.% NaCl) containing small amounts of CO$_{2}$. The H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl inclusions represent immiscible fluids trapped earlier along the solvurs curve at temperatures from 430$^{\circ}$ to 250$^{\circ}$C and pressures of 1 kbars. Detailed fluid inclusion chronologies may suggest a progressive decrease in pressure during the auriferous mineralization. The aqueous inclusion fluids represent either later fluids evelved through extensive fluid unmixing (CO$_{2}-CH$_{4}$ effervescence) from a homogeneous H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters possibly related to uplift and unloading of the mineralizing suites. The initial fluids were homogeneous containing H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl components and the following properties: the initital temperature of >250$^{\circ}$ to 430$^{\circ}$C, X$_{CO}\;_{2}$ of 0.16 to 0.62, 5 to 14 mole% CH$_{4}$, 0.06 to 0.3 mole% N$_{2}$ and salinities of 0.4 to 4.9 wt.% NaCl. The T-X data for the Seolhwa gold mine may suggest that the Seolhwa auriferous hydrothermal system has been probably originated from adjacent granitic melt which facilitated the CH$_{4}$ formation and resulted in a reduced fluid state evidenced by the predominance of pyrrhotite. The dominance of negative ${\delta}\;^{34}$S values of sulfides (-0.6 to 1.4$%_o$o) are consistent with their deep igneous source.

  • PDF

W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China (중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용)

  • 윤경무;김상중;이현구;이찬희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.179-189
    • /
    • 2002
  • The Geology of the Shizhuyuan W-Sn-Bi-Mo deposits, situated 16 Ian southeast of Chengzhou City, Hunan Province, China, consist of Proterozoic metasedimentary rocks, Devonian carbonate rocks, Jurassic granitic rocks, Cretaceous granite porphyry and ultramafic dykes. The Shizhuyuan polymetallic deposits were associated with medium- to coarse-grained biotite granite of stage I. According to occurrences of ore body, ore minerals and assemblages, they might be classified into three stages such as skarn, greisen and hydrothernlal stages. The skarn is mainly calcic skarn, which develops around the Qianlishan granite, and consists of garnet, pyroxene, vesuvianite, wollastonite, amphibolite, fluorite, epidote, calcite, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unidetified Bi- Te-S system mineral, magnetite, and hematite. The greisen was related to residual fluid of medium- to coarse-grained biotite granite, and is classified into planar and vein types. It is composed of quartz, feldspar, muscovite, chlorite, tourmaline, topaz, apatite, beryl, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unknown uranium mineral, unknown REE mineral, pyrite, magnetite, and chalcopyrite with minor hematite. The hydrothermal stage was related to Cretaceous porphyry, and consist of quartz, pyrite and chalcopyrite. Scheelite shows a zonal texture, and higher MoO) content as 9.17% in central part. Wolframite is WO); 71.20 to 77.37 wt.%, FeO; 9.37 to 18.40 wt.%, MnO; 8.17 to 15.31 wt.% and CaO; 0.01 to 4.82 wt.%. FeO contents of cassiterite are 0.49 to 4.75 wt.%, and show higher contents (4.]7 to 4.75 wt.%) in skarn stage (Stage I). Te and Se contents of native bismuth range from 0.00 to 1.06 wt.% and from 0.00 to 0.57 wt.%, respectively. Unidentified Bi-Te-S system mineral is Bi; 78.62 to 80.75 wt.%, Te; 12.26 to 14.76 wt.%, Cu; 0.00 to 0.42 wt.%, S; 5.68 to 6.84 wt.%, Se; 0.44 to 0.78 wt.%.

A Study on the Precipitation Mechanism of Quartz Veins from Sangdong Deposit by Analyses of Vein Texture and Trace Element in Quartz (상동광산 석영맥의 조직 및 석영의 미량원소 분석을 통한 광맥 침전 기작 도출)

  • Youseong Lee;Changyun Park;Yeongkyoo Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.239-257
    • /
    • 2023
  • Sangdong deposit, a W-Mo skarn deposit, is located in Taebaeksan mineralized district, hosting vertically developed scheelite-quartz veins that formed at the late ore-forming stage. In this study, we tried to examine the geochemical signatures of ore-forming fluids and vein-forming mechanisms by analyzing the micro-texture of quartz veins and trace element concentrations of quartz. As a result of texture analyses, quartz veins in the hanging wall orebody and the foot wall orebody commonly exhibit the blocky and the elongate blocky texture, respectively, whereas quartz veins in the main orebody show both textures. These textural differences indicate that quartz veins from the hanging wall orebody were precipitated by the primary hydrofracturing due to H2O saturation in the igneous body with relatively high temperature and pressure at a vein-skarn stage, and after that, repeated hydrofracturing caused the formation of quartz veins from the main orebody and foot wall orebody. The results of trace element concentrations show that Li++Al3+↔Si4+ is a main substitution mechanism. However, those of the foot wall orebody were clearly divided into a Li+-dominated substitution and a Na+-, K+-dominated substitution. Considering that quartz veins from the foot wall orebody commonly show the elongate blocky texture, such a distinction means that it is a result of repeated injections of fluid with the different composition. Ti concentrations of quartz from the hanging wall, main, and the foot wall orebody are 28.6, 8.2, and 15.7 ppm in average, respectively. Given a proportional relationship between the precipitation temperature and Ti concentrations, it seems that quartz veins from the hanging wall orebody were precipitated at the highest temperature. Al concentrations of the hanging wall, main, and the foot wall orebody having an inverse relationship with fluid pH are 162.3, 114.2, and 182.5 ppm in average, respectively. These results show that Al concentrations in vein-forming fluids were not changed dramatically. Moreover, these concentrations are extremely low in comparison with the other hydrothermal deposits. This indicates that quartz in overall ore veins at Sangdong deposit was precipitated from the constant condition with slightly acidic to near neutral pH.

Exploration and Development in the Janggun Pb-Zn Mine (장군광산(將軍鑛山)의 탐사(探査)와 개발현황(開發現況))

  • Kho, Suck Jin
    • Economic and Environmental Geology
    • /
    • v.20 no.4
    • /
    • pp.289-303
    • /
    • 1987
  • 당(當) 광산(鑛山)은 1936년(年) 금(金), 은(銀) 광종(鑛種)으로 출원(出願)하였다가 1940년(年) 망간을 추가(追加)하여 망간 광산(鑛山)으로 1975년(年)까지 Mn(30~35%) 110,000여(餘)톤을 생산(生産), 국내생산량(國內生産量)의 70%를 점(占)하였고 1976년(年) Mn광상(鑛床) 하부(下部)에 연(鉛), 아연(亞鉛) 유화광(硫化鑛)을 발견(發見), 현재(現在)까지 Pb十Zn=10% 이상(以上) 원광석(原鑛石) 500,000여(餘)톤을 처리(處理), 연정광(鉛精鑛)(Pb : 62%) 37,000여(餘)톤, 아연정광(亞鉛精鑛)(Zn : 46.5%) 37,000여(餘)톤, 유비광정광(硫砒鑛精鑛)(As : 30%) 5,000여(餘)톤을 생산(生産)하였다. 현재(現在) 일처리(日處理) 220톤 선광장(選鑛場)을 일처리(日處理) 400톤 규모(規模)로 증설계획중(增設計劃中)이다. 당(當) 광산(鑛山)에서 현재(現在)까지 시행(施行)한 갱외시추(坑外試錐)는 75개공(個孔) 18,500여(餘)m, 갱내시추(坑內試錐) 750개공(個孔) 40,000여(餘)m 갱도(坑道) 총연장(總延長) 13,000m에 달(達)하며 지표(地表)(623ML)로 부터 수직(垂直) 300m 하부(下部)까지 갱도(坑道)가 개착(開鑿)되어 있다. 당(當) 광산(鑛山)의 지질(地質)은 여러 조사서(調査書)에 의(依)하여 견해(見解) 차이(差異)를 보여주고 있으나 대체(大體)로 다음과 같은 쪽으로 인정되고 있다. 즉(卽) 본지역(本地域) 루층군(累層群)의 층순(層順)을 하위(下位)로 부터 상위(上位)로 향(向)하여 원남층(遠南層)${\rightarrow}$율리통(栗里統)${\rightarrow}$장산규암층(壯山珪岩層)${\rightarrow}$두음리층(斗音里層)${\rightarrow}$장군석회암층(將軍石灰岩層)${\rightarrow}$동수곡층(東水谷層)${\rightarrow}$재산층(才山層)의 순위(順位)로 보며 장산규암층(壯山珪岩層)과 두음리층(斗音里層)을 조선계(朝鮮系)의 양덕통(陽德統)으로, 장군석회암층(將軍石灰岩層)을 대석회암통(大石灰岩統)으로, 동수곡층(東水谷層)과 함탄층(含炭層)인 재산층(才山層)을 평안계(平安系) 지층(地層)으로 대비(對比)한다. 이들은 본지역(本地域) 북(北)쪽에서는 선(先)캠브리아기(紀)의 원남층(遠南層)과 율리통(栗里統)을 불정합(不整合)으로 덮고 남측(南側)에서는 재산층(才山層)과 원남층(遠南層)이 단층접촉(斷層接觸)하고 있다. 이들 지층(地層)의 주향(走向)은 $N60^{\circ}{\sim}80^{\circ}W$, $N60^{\circ}{\sim}80^{\circ}E$이며 경사(傾斜)는 대체(大體)로 $50^{\circ}{\sim}80^{\circ}N$이며 전체적(全體的)으로 역전(逆轉)된 층서(層序)를 보여주는 바 지질구조(地質構造)에 있어서 단사구조(單斜構造)인지 등사(等斜)습곡의 향사(向斜), 또는 등사(等斜)습곡이 배사구조(背斜構造)인지 아직 밝혀지지 않고 있다. 화성암체(火成岩體)는 본지역(本地域) 서측(西側)에 쥬라기(紀) 춘양화강암(春陽花崗岩)이 불규칙(不規則)한 실입(實入) 접촉면(接觸面)을 보여주며 시대미상(時代未詳)(백악기(白堊紀)?)의 거정화강암(巨晶花崗岩), 반화강암(半花崗岩)이 소암주상(小岩株狀)으로 몇 곳 실입(實入)하고 산성(酸性)~중성(中性)의 맥암(脈岩)과 염기성(鹽基性) 안산암질암(安山岩質岩)이 실입(實入)해 있다. 광상(鑛床)은 장군석회암층(將軍石灰岩層)에 배태(胚胎)되어 있는 열수교대(熱水交代) 연(鉛), 아연(亞鉛), 은등(銀等)의 혼합(混合) 유화광상(硫化鑛床)으로 다량(多量)의 Mn분(分)을 수반(隨伴)하며 지표부(地表部)에 Mn광상(鑛床)을 형성(形成)하고 있다. 광상(鑛床)의 형태(形態)는 괴상(塊狀), 각력(角礫)pipe상(狀), 맥상(脈狀)으로 나타난다. 광상(鑛床)의 성인(成因)과 생성시기(生成時期)에 대(對)하여 많은 논란(論難)이 있다. 즉(卽) 열수교대(熱水交代)냐, 접촉교대(接觸交代)냐, 동시퇴적기원(同時堆積起源)이냐, 또는 생성시기(生成時期)가 쥬라기(紀)인지 백악기(白堊紀)인지에 대해 이론(異論)이 있다. 본지역(本地域) 광상(鑛床)은 남본(南本), 100우(右), 북(北), 유비철(硫砒鐵), 동(東), 서(西), 재남(才南), 재동(才東), 110호(號) 등(等)이 지표(地表) Mn로두광화대(露頭鑛化帶)와 관련(關聯) 명명(命名)된 바 전(前)4자(者)는 하부(下部)에서 유화광상(硫化鑛床)이 확인(確認)되었으나 나머지 후자(後者)에서는 아직 하부(下部)에 유화광상(硫化鑛床)이 확인(確認)되지 않고 있으며 남본광상(南本鑛床)으로 부터 남동(南東) 300여(餘)m 지점에 장군석회암층(將軍石灰岩層)과 동수곡층(東水谷層) 경계부(境界部)에 Fe 55~60% 자철광상(磁鐵鑛床)이 확인(確認)된 바 신례미(新禮美) 자철광상(磁鐵鑛床)과 유사성(類似性)이 있는 것 같아 흥미(興味)롭다. 당(當) 광산(鑛山)의 현재(現在)까지의 탐광(探鑛)은 남본광상(南本鑛床) 지표로두(地表露頭)(Mn) 하부(下部)에서 확인(確認)된 연(鉛), 아연(亞鉛), 은(銀) 유화광체(硫化鑛體) 하부(下部)와 전탐(電探)에 의(依)해 확인(確認)된 북광체(北鑛體), 갱도접근중(坑道接近中)에 확인(確認)된 100우광체(右鑛體), 유비철광체(硫砒鐵鑛體) 등(等)의 하부(下部) 탐광(探鑛)을 주(主)로 하고 지표(地表) Mn로두(露頭) 하부(下部)에 대(對)한 시추탐광(試錐探鑛0을 병행(竝行)하고 있으며 시추(試錐)에 의(依)해서 지표(地表)로 부터 790m 하부(下部)(해발(海拔) 200ML)까지 광화대(鑛化帶)가 확인(確認)되었다. 향후(向後) 탐광방침(探鑛方針)을 확고(確固)히 수립(樹立)하기 위(爲)하여는 광상(鑛床)의 성인구명(成因究明)은 물론(勿論) 광상(鑛床)의 배태조건(胚胎條件)에 있어 지질구조규제(地質構造規制)와 화강암(花崗岩)의 실입상(實入狀)과의 관계(關係), 광액(鑛液)의 통로(通路)에 대(對)한 지질구조(地質構造), 모암(母岩)의 화학(化學) 물리적(物理的) 특성(特性)에 대(對)한 연구(硏究) 검토(檢討)가 었어야 하겠다.

  • PDF

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF

Occurrence and Chemical Composition of Dolomite from Komdok Pb-Zn Deposit (검덕 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • The Komdok Pb-Zn deposit, which is the largest Pb-Zn deposit in Korea, is located at the Hyesan-Riwon metallogenic zone in Jiao Liao Ji belt included Paleoproterozoic Macheolryeong group. The geology of this deposit consists of Paleoproterozoic metasedimentary rocks, Jurassic Mantapsan intrusive rocks and Cenozoic basalt. The Komdok deposit which is a SEDEX type deposit occurs as layer ore and vein ore in the Paleoproterozoic metasedimentary rocks. Based on mineral petrography and paragenesis, dolomites from this deposit are classified four types (1. dolomite (D0) as hostrock, 2. early dolomite (D1) associated with tremolite, actinolite, diopside, sphalerite and galena from amphibolite facies, 3. late dolomite (D2) associated with talc, calcite, quartz, sphalerite and galena from amphibolite facies, 4. dolomite (D3) associated with white mica, chlorite, sphalerite and galena from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.20Mg0.80-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D0), Ca1.00-1.02M0.97-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D1), Ca0.99-1.03Mg0.93-0.98Fe0.01-0.05Mn0.00-0.01As0.00-0.01(CO3)2(D2) and Ca0.95-1.04Mg0.59-0.68Fe0.30-0.36Mn0.00-0.01 (CO3)2(D3), respectively. It means that dolomites from Komdok deposit have higher content of trace elements (FeO, MnO, HfO2, ZnO, PbO, Sb2O5 and As2O5) compared to the theoretical composition of dolomite. These trace elements (FeO, MnO, ZnO, Sb2O5 and As2O5) show increase and decrease trend according to paragenetic sequence, but HfO2 and PbO elements no show increase and decrease trend according to paragenetic sequence. Dolomites correspond to Ferroan dolomite (D0, D1 and D2), and Ferroan dolomite and ankerite (D3), respectively. Therefore, 1) dolomite (D0) as hostrock was formed by subsequent diagenesis after sedimentation of Paleoproterozoic (2012~1700 Ma) silica-bearing dolomite in the marine evaporative environment. 2) Early dolomite (D1) was formed by hydrothermal metasomatism origined metamorphism (amphibolite facies) associated with intrusion (1890~1680 Ma) of Paleoproterozoic Riwon complex. 3) Late dolomte (D2) was formed from residual fluid by a decrease of temperature and pressure. and dolomite (D3) in quartz vein was formed by intrusion (213~181 Ma) of Jurassic Mantapsan intrusive rocks.

Occurrence and Chemical Composition of Dolomite and Chlorite from Xiquegou Pb-Zn Deposit, China (중국 Xiquegou 연-아연 광상의 돌로마이트와 녹니석 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.125-140
    • /
    • 2022
  • The Xiquegou Pb-Zn deposit is located at the Qingchengzi orefield which is one of the largest Pb-Zn mineralized zone in the northeast of China. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Xiquegou deposit which is a Triassic magma-hydrothermal type deposit occurs as vein ore filled fractures along fault zone in unit 3 (dolomitic marble and schist) of Dashiqiao formation of the Paleoproterozoic Liaohe group. Xiquegou Pb-Zn deposit consists of quartz, apatite, calcite, pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, stannite, galena, tetrahedrite, electrum, argentite, native silver and pyrargyrite. Wallrock alteration of this deposit contains silicification, pyritization, dolomitization, chloritization and sericitization. Based on mineral petrography and paragenesis, dolomites from this deposit are classified two type (1. dolomite (D0) as wallrock, 2. dolomite (D1) as wallrock alteration in Pb-Zn mineralization quartz vein ore). The structural formulars of dolomites are determined to be Ca1.03-1.01Mg0.95-0.83Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) and Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1), respectively. It means that dolomites from the Xiquegou deposit have higher content of trace elements compared to the theoretical composition of dolomite. The dolomite (D1) from quartz vein ore has higher content of these trace elements (FeO, PbO, Sb2O5 and As2O5) than dolomite (D0) from wallrock. Dolomites correspond to Ferroan dolomite (D0), and ankerite and Ferroan dolomite (D1), respectively. The structural formular of chlorite from quartz vein ore is (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8. It indicated that chlorite of quartz vein ore is similar with theoretical chlorite and corresponds to Fe-rich chlorite. Compositional variations in chlorite from quartz vein ore are caused by mainly octahedral Fe2+ <-> Mg2+ (Mn2+) substitution and partly phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV).

Occurrence and Chemical Composition of White Mica from Zhenzigou Pb-Zn Deposit, China (중국 Zhenzigou 연-아연 광상의 백색운모 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.83-100
    • /
    • 2022
  • The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.