The foodservice franchise is preferred by the founders who inaugurate a business enterprise, because it is not difficult to convert into money more than other private enterprise. The success or failure of the foodservice franchise depends 80 percent on its location. Therefore, this research aimed to study the location factors of the first shops of foodservice franchise in Seoul through the analyses of nearest neighborhood effect and statistical relationship between variables. According to there results, the location characteristics of the first shops of foodservice franchise are summarized as in the following three items. First, the spatial distribution pattern of the first shops is a clustered type. Second, the first shops relate to the 15 variables which are the number of financial facilities, the number of business service offices, and the number of hotels and restaurants, etc. Third, the main location factor of the first shops is the number of financial facilities. In conclusion, it is estimated that Gangnam-gu and Jung-gu might be good for the location of the first shops of foodservice franchise in Seoul, because these two places have many financial buildings.
VIP marketing has recently become the main concern in the field of marketing, which could increase customer loyalty and sales through providing customers in the top 20% with customized services. In this study, some cases of RFID (Radio Frequency Identification) technology based VIP channel management are introduced and analyzed in the technology point of view. As a result of case studies, it has been shown what the companies may consider when applying RFID technology in customer relationship management (CRM) and its general scenario. As one of the AIDC(Automatic Identification and Data Capture) technologies, RFID can enable to identify humans or objects with radio frequency and is being widely used to many industrial areas such as logistics, delivery, inventory management, and so on. If this technology is applied to CRM as a new channel for customer management, it will be possible to provide an individual customer with various types of intelligent services customized to his or her spending habits. RFID for CRM channel management is still in its early stages, but it is sure that RFID technology will be an useful tool to manage customers including especially VIP in many businesses and capture important information applicable to marketing campaign in the near future.
Today the beauty industry has reached a point of saturation, and competition has become fiercer than ever. Furthermore, customer needs and expectations have become increasingly sophisticated and diversified. In particular, it has become more difficult for small beauty salons to maintain customer loyalty by staying competitive and satisfying customer needs and demand. In fact, beauty salon customers want to get individualized services as well as a wide variety of hairstyles. Therefore, this study attempted to analyze the sustainability management of beauty salons. It looked at how an increase in sales and in customer loyalty can be achieved by enhancing awareness of the fact that small beauty salons' competitiveness stems from strenuous efforts for the best customer service, individualized hairstyling services, professional skills and customer trust. The study results found that beauty salons need to keep promoting development and improvement for the following: advanced skills, excellent services, reasonable price, convenient locations, advertisement and PR, development of an exclusive manual, intensive staff training and character education plan, complaint management and follow-up and decrease in customer migration.
To prevent the spread of disease in aquaculture, it is a need for a system to predict fish diseases while monitoring the water quality environment and the status of growing fish in real time. The existing research in predicting fish disease were image processing techniques. Recently, there have been more studies on disease prediction methods through deep learning techniques. This paper introduces the research results on how to predict diseases of Paralichthys Olivaceus with deep learning technology in aquaculture. The method enhances the performance of disease detection rates by including data augmentation and pre-processing in camera images collected from aquaculture. In this method, it is expected that early detection of disease fish will prevent fishery disasters such as mass closure of fish in aquaculture and reduce the damage of the spread of diseases to local aquaculture to prevent the decline in sales.
Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
Journal of Intelligence and Information Systems
/
v.20
no.4
/
pp.1-23
/
2014
Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.
The purpose of this paper is to examine the current situation and background of the Russian consumer music market, where digital music sources are making great strides in the noted recent years. In addition, music storage technology, media and change are considered together in this report. Moreover, Russia is the 12th largest music market in the world. The Russian music industry is following the recent trend of the global music industry, where the digital music market is growing rapidly on many different levels. The explosive growth of the digital sound sources in Russia's music industry is attributed to the explosive increase in available consumer downloads, streaming sound source service, and the increase in the number of digital sound sources using mobile technologies due to the development of the Internet. In particular, the sales of the available and accessible streaming sound sources are expected to grow explosively by the year 2020, which is expected to account for more than 85% of total digital music sales. In other words, the spread of smartphones and the resulting changes in the lifestyle of the Russians have created these changes for the global consumer of music. In other words, the time has come for anyone to easily access music and listen to music without a separate audio or digital player. And the fact that the Russian government's strong policy on the eradication of illegal copying of music is becoming an effective deterrent, as is also the factor that led to the increase of the share of the digital sound source to increase sales in Russia. Today, the Russian music industry is leading this change through the age and process of simply adapting to the digital age. Music is the most important element of cultural assets, and it is the beneficial content, which drives the overall growth of the digital economy. In addition, if the following five improvements(First, strengthen the consciousness of the Russian people about copyright protection; Second, utilizing the Big Data Internet resources in the digital music industry; Third, to improve the monopoly situation of digital music distributors; Fourth, distribution of fair music revenues; and Fifth, revitalization of a re-investment in the current Russian music industry) are effective and productive, Russia's role and position in the world music market is likely to expand.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.9
no.5
/
pp.103-114
/
2014
The concept of entrepreneurial orientation has been recognized as a key driver for success of business ventures. Since small and medium-sized business ventures usually lack in business experience, firm level entrepreneurship seems to play an important role in generating firm performance. Following those logics, traditional approaches assumed that the relationship between entrepreneurial orientation and firm performance is linear, but recently studies start to report non-linear relationships. However, only a few researches examines and compares the performance effects of entrepreneurial orientation with diverse performance indicators. Current study explores the effects of entrepreneurial orientation both on financial and innovative performance with 1,497 Korean small and medium-sized business ventures. This study finds that there is a linear relationship between entrepreneurial orientation and financial performance, but inverted U-shaped relationships between entrepreneurial orientation and innovative performance, measured by product novelty and patent issued. Also those relationship patterns are consistent with different measurement of entrepreneurial orientation. Based on these results, theoretical implications with some limitations are discussed.
Journal of the Economic Geographical Society of Korea
/
v.14
no.3
/
pp.307-324
/
2011
The culture industry is viewed as a driving industry in the 21th century. Korea has experienced the rapid growth rate of the cultural industry in terms of sale amounts for the period of 2004-2009. The purposes of this study are to analyze the spatial pattern of the cultural industry and to empirically examine the effect of municipalities' cultural industries on regional economy using SUR model. The major findings are as follows: First, cultural industries are concentrated in the capital region and several metropolitan areas. Secondly, the estimated result of SUR model shows that there is inter-relationship between cultural industry and regional economy. The effect of the cultural industry on GRDP is that the cultural industry increased 1%, GRDP increased by 0.46%. In turn, GRDP increased 1%, cultural industry increased by 0.75%. Thirdly, the elasticity of the cultural industry on GRDP is much higher than that of labor or capital stock, showing that the cultural industry has a more powerful influence on its regional economy. Fourth, the elasticity of the cultural industry on GRDP of Gun is higher than that of shi, indicating that it is rational for Gun to develop strategies to promote competitive power of the cultural Industry for regional economic growth.
Data is the most important asset in the financial sector. On average, 71 percent of financial institutions generate competitive advantage over data analysis. In particular, in the card industry, the card transaction data is widely used in the development of merchant information, economic fluctuations, and information services by analyzing patterns of consumer behavior and preference trends of all customers. However, creation of new value through fusion of data is insufficient. This study introduces the analysis and forecasting of consumption trends of credit card companies which convergently analyzed the social data and the sales data of the company's own. BC Card developed an algorithm for linking card and social data with trend profiling, and developed a visualization system for analysis contents. In order to verify the performance, BC card analyzed the trends related to 'Six Pocket' and conducted th pilot marketing campaign. As a result, they increased marketing multiplier by 40~100%. This study has implications for creating a methodology and case for analyzing the convergence of structured and unstructured data analysis that have been done separately in the past. This will provide useful implications for future trends not only in card industry but also in other industries.
The traditional retail industry significantly changed over the past decade due to the mobile and online technologies. This change has been accompanied by a shift in consumer behavior regarding purchasing patterns. Despite the rise of online shopping, there are still specific categories of products, such as "Processed food" in Mongolia, for which traditional shopping remains the preferred purchase method. To prepare for the inevitable future of retail businesses, firms need to closely analyze the performance of their offline stores to plan their further actions in a new multi-channel environment. Retailers must integrate diverse channels into their operations to stay relevant and adjust to the shifting market. In this research, we have analyzed the performance data such as sales, profit, and amount of sales of offline stores by using clustering approach. From the clustering, we have found the several distinct insights by comparing the circumstances and performance of retail stores. For the certain retail stores, we have proposed three different strategies: a fulfillment hub store between online and offline channels, an experience store to elongate customers' time on the premises, and a merge between two non-related channels that could complement each other to increase traffic based on the store characteristics. With the proposed strategies, it may enhance the user experience and profit at the same time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.