• Title/Summary/Keyword: 매설간격

Search Result 41, Processing Time 0.015 seconds

Effects of Nitrogen and Phosphorus Fertilization on Soil Nitrogen Mineralization of Pinus rigida and Larix kaempferi Plantations in Yangpyeong area, Gyeonggi Province (질소(窒素)와 인(燐) 시비(施肥)가 경기도(京畿道) 양평지역(楊平地域) 리기다소나무와 낙엽송(落葉松) 조림지(造林地) 토양(土壤) 내(內) 질소무기화(窒素無機化)에 미치는 영향(影響))

  • Lee, Im-Kyun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.1
    • /
    • pp.82-90
    • /
    • 2006
  • To examine the effects of nitrogen and phosphorus fertilization on soil nitrogen (N) mineralization, we monitored rates of soil nitrogen mineralization and nitrification in 41-year-old pitch pine (Pinus rigida Mill.) and Japanese larch (Larix kaempferi Gordon) stands growing on similar soil condition in central Korea. For this study, we used the buried-bag incubation method. Fertilizers were applied at three levels [control (C), 200 N kg/ha+25 P kg/ha (LNP), and 400 N kg/ha+50 P kg/ha(HNP)] on 5 June, 1996. Mineral soils (0~20 cm) were incubated 6 times with 45-day-interval from 5 June 1996 to 4 June 1997. Initial soil moisture contents were significantly different among sampling dates and between tree species. Initial soil moisture contents were 32% for C, 28% for LNP, and 26% for HNP at the P. rigida stand, and 31% for C, 31% for LNP, and 33% for HNP at the L. kaempferi stand, respectively. Mean daily N mineralization rates were significantly different among sampling dates and treatments. Annual net N mineralization and nitrification were also significantly different between the two tree species. The annual net N mineralization was 10.6 kg/ha/year for C, 23.3 kg/ha/year for LNP and 6.6 kg/ha/year for HNP at the P. rigida stand, and 2.0 kg/ha/year for C, 12.1 kg/ha/year for LNP and 16.7 kg/ha/year for HNP at the L. kaempferi stand. The annual nitrification was 2.8 kg/ha/year for C, 7.6 kg/ha/year for LNP and 4.3 kg/ha/year for HNP at the P. rigida stand, and 4.3 kg/ha/year for C, 14.8 kg/ha/year for LNP and 6.6 kg/ha/year for HNP at the L. kaempferi stand. The ratios of annual net nitrification to annual net N mineralization were 26% for C, 33% for LNP, 65% for HNP at the P. rigida stand, and 100% for C, 100% for LNP, 40% for HNP at the L. kaempferi stand, respectively. This study indicates that N mineralization in forest may be different by the predominant tree species and fertilization even under similar environments. It is likely that the quality of organic matter might control nitrogen mineralization and nitrification in soils.