본 논문에서는 3세대 이동통신망이 Mobile IP를 지원하기 위한 통합망 구조를 제시하고, 통 합망에서 DiffServ에 의한 종단간 QoS를 제공할 경우 망을 구성하는 각 요소가 가져야 할 QoS 제어기능 및 메카니즘을 제안한다. 이를 위해 현재 IMT-2000의 QoS 제광 구조를 살펴보고, 통합망의 필요성 및 구조를 제시한 다음, DiffServ 클래스와 무선채널과의 매핑관계 및 종단간 QoS 제공 메카니즘을 제안한다. 또한 CDMA 이동인터넷망에서 QoS지원을 위한 무선접속 링크레벨의 성능을 분석한다. 데이터 트래픽의 경우 SREJ ARQ방식과 Type-1 Hybrid ARQ방식을 비교 분석하고, 음성 트래픽의 경우 BCH 코딩을 사용하여 데이터 트래픽 부하변화에 따른 음성 패킷의 에러율을 분석한다 분석 결과 구현상의 복잡도는 높으나 QoS를 만족시키는 적응적 ARQ와 적응적 FEC 코딩을 이용하는 방식이 보다 효율적임을 알 수 있다.
무선 ad hoc 망은 고정된 인프라 망이 없기 때문에 이동 노드들의 그룹 이동성에 대한 호 수락 제어에 활용하기에는 많은 문제점을 가지고 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해서 무선 ad hoc 망에서 그룹 이동성 때문에 발생하는 이동 노드들의 그룹 핸드오프를 지원하기 위한 호 수락 제어 방안을 제안하였다. 본 논문에서 제안한 호 수락 제어 방안은 선택적 호 수락 제어 방식이며 ad hoc 라우팅 프로토콜을 이용한다. 이 방식은 확장된 Hello 메시지를 이용하여 그룹 이동성을 예측하며 능동적으로 버스트 핸드오프를 지원하기 위한 가드 채널의 수를 선택적으로 조정하여 핸드오프 블락킹 확률을 줄이고 QoS를 보장할 수 있는 방안이다. 본 논문에서는 시뮬레이션을 통하여 핸드오프 블락킹 확률, 신규 호 블락킹 확률, 자원 이용율에 대해서 기존의 무선 방식에서 사용하는 호 수락 제어 방식과 비교하여 제안된 방식이 버스트 핸드오프 지원에 더 효율적임을 보였다.
RFID를 이용한 실내 위치 인식 시스템은 실내의 위치를 예측하는 방식이기 때문에 장애물 등 주변 환경에 의해 오차가 발생한다. 본 논문에서는 역전파 신경망을 이용하여 오차를 줄이고자 한다. 신경망은 층간의 가중치를 조정하고 훈련시켜 리더를 보유한 물체의 실제위치와 실험을 통해 예상되는 위치간의 오차를 줄인다. 본 논문에서는 중앙값을 사용한 방법과 방사 형태를 사용한 방법을 신경망의 입력으로 사용하는 구성을 제안하였다. 두 가지 방법 중 장애물이 있는 환경에서 어떤 방법이 실제 위치를 인식하는 데에 더 효율적인지 확인하고 오차를 줄이고자 한다. 그 결과 중앙값을 이용한 방법이 오차가 더 적었으며, 데이터 개수가 많을수록 오차가 더 줄어드는 것을 확인하였다.
실내 자율 주행은 실외 환경에서의 자율 주행과는 다른 환경적인 요소가 주어진다. 폐쇄된 환경에서 좁은 길을 따라 주행해야 하며, 불규칙한 조명, 계단과 같은 지형의 특성, 바닥에 산재한 장애물 등 실외 환경과 다른 요소를 극복해야 한다. 또한 실내 복도에서의 주행은 텍스처가 유사하거나 다양성이 적은 환경의 경우 복잡한 환경에 비해 인식에 어려움이 있다. 본 논문에서는 다양성이 적은 실내 복도환경에서의 컨벌루션 신경망(CNN)을 이용한 자율 주행 드론을 연구한다. 설계한 신경망은 드론의 전면 카메라로부터 이미지를 받아온 후, 그 이미지를 바탕으로 다음 경로를 예측하여 드론을 조향한다. 총 38번의 주행 테스트 결과, 복도 주변의 벽이나 문에 부딪히지 않고 직선 구간을 완주하여 다양성이 적은 실내 환경에서의 주행 성능을 확인할 수 있었다.
본 논문에서는 심층신경망(deep neural network, DNN)을 이용하여 디지털 홀로그램을 생성하는 신경망의 학습을 위한 데이터 균형 조정 방법에 대하여 논의 한다. 심층신경망은 딥러닝(deep learning, DL) 기술에 기반을 두고 있고, 생성형 적대적 네트워크(generative adversarial network, GAN)계열을 이용한다. 심층 신경망을 통하여 생성 하고자하는 홀로그램의 기본 단위인 프린지 패턴은 홀로그램 평면과 객체의 위치에 따라 데이터의 형태가 매우 다르다. 하지만 데이터의 분류 기준이 명확하지 않기 때문에 학습 데이터의 불균형이 생길 수 있다. 학습 데이터의 불균형은 곧 학습의 불안정 요소로 작용한다. 따라서 분류 기준이 명확하지 않은 데이터를 분류하고 균형을 맞추는 방법을 제시한다. 그리고 이를 통하여 학습이 안정화됨을 보인다.
선박 발전기의 여자기는 출력 단자 전압을 일정하게 유지하기 위하여 여자전류 제어를 통해 자속을 조정한다. 여자기 내부에 있는 전압제어기는 통상적으로 비례 적분 제어방식이 사용되는데 게인과 시정수에 의해 결정되는 응답 특성은 적절치 못한 설정값에 의해 원하지 않는 출력을 내며 이로 인해 선내 전력의 품질과 안정성을 떨어뜨릴 수 있다. 본 논문에서는 IEEE에서 제공하는 AC4A 타입의 여자기 모델을 통해 얻을 수 있는 안정적인 입출력 데이터를 활용하여 신경망 회로를 학습시킨 후 기존의 비례 적분 제어방식의 전압제어기를 학습된 신경망 회로 제어기로 대체하여 시뮬레이션을 수행하였다. 그 결과 기존 대비 최대 9.63%까지 오버슈팅이 개선되었으며, 안정적인 응답 특성에 대한 우수성을 확인하였다.
국내 전력계통의 주파수 조정용 발전기로 사용되고 있는 가스터빈은 탄소중립 정책과 더불어 신속한 기동·정지 및 높은 열효율 등으로 인해 이용률이 증가하고 있다. 가스터빈은 고온의 화염을 이용하여 터빈을 회전시키기 때문에 터빈 입구온도가 기기의 성능과 수명을 좌우하는 핵심요소로 작용하고 있다. 하지만 입구온도는 직접적인 측정이 불가능함에 따라 제작사가 산출한 온도를 이용하거나, 현장 경험을 토대로 하여 예측된 온도를 적용하고 있어서 가스터빈의 안정적인 운전 및 유지관리에 많은 어려움을 겪고 있다. 이에 본 연구에서는 인공신경망에서 많이 사용되고 있는 DNN(: Deep Neural Network) 기반으로 하는 재열 가스터빈의 입구온도를 예측할 수 있는 모델을 제시하고 실측 데이터를 기반으로 제안된 DNN의 성능을 검증하고자 한다.
본 논문에서는 피에조콘 관입시험 결과와 상재하중으로부터 점토의 비배수전단강도를 간단히 예측하기 위한 피에조콘 인공신경망 모델 구축에 대하여 기술하였다. 피에조콘 인공신경망 모델의 구축을 위하여 먼저 국내 8개 지역에서 수행된 피에조콘 관입시험 결과와 불교란 시료에 대해 수행된 비압밀-비배수 삼축압축실험(UU)으로 얻어진 비배수전단강도 결과를 바탕으로 데이터베이스가 구축되었으며 오차역전파 알고리즘에 의하여 다층 구조를 갖는 최적 인공신경망 모델이 구성되었다. 구성된 인공신경망 모델은 모델 구축 시에 사용되지 않은 새로운 검증자료에 대해 비배수전단강도 예측을 수행하고 실내시험 결과와 비교함으로써 모델의 타당성이 검증되었다. 또한 피에조콘으로부터 비배수 전단강도의 예측을 위해 제안된 기존의 경험적 방법으로 예측된 비배수전단강도와 제안된 모델의 예측결과를 비교하였다. 인공신경망 모델들은 사용된 전달함수에 따라 단일 은닉층 내에 존재하는 최적 뉴우런 개수는 다르지만 학습자료와 검증자료에 대해 공통적으로 결정계수 $R^2=0.69\~0.72$ 범위의 예측정확도를 보여 국내 연약지반에서 피에조콘 관측결과들과 비배수전단강도 간의 비선형적 상관관계를 정의하는 데에 유용함을 알 수 있었다. 또한 구성된 인공신경망 모델은 지역적인 조정(site calibration)을 필요로 하는 기존의 경험적 방법들에 비하여 전 지역에서 고르게 예측신뢰성이 높으며 이는 학습과정을 통하여 각 지역의 지반공학적 특성을 일반화하는 데에 성공했기 때문으로 인공신경망 모델이 국내 전 지역에서 적용될 수 있는 일반화된 모델로 발전할 수 있음을 의미한다.
최근에 퍼지 이론을 인공 신경망에 접목하여 개선된 성능을 보이려는 경향이 많다. Goh는 퍼지단층 퍼셉트론 알고리즘과 일반적인 델타 규칙(Generalized delta rule)에 기반한 개선된 퍼지 퍼셉트론을 제안하여 Exclusive-OR(XOR) 문제 등을 해결하였다 그러나 이 방법은 계산량의 증가와 복잡한 영상인식에 적응하기에는 어려움이 있다. 논문에서는 동적 역치조정에 의한 개선된 퍼지 단층 퍼셉트론을 제안한다. 제안된 방법은 페턴인식의 벤치마크로 사용되는 XOR문제에 적용된다. 또한 영상 응용영역으로서 디지털 영상의 인식에 적용한다. 실험결과에서 항상 수렴하지는 않지만 그러나 제안된 모델은 학습시간의 개선과 높은 수렴율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.