얼굴은 주변의 조명이나 카메라의 위치, 사람의 자세에 따라 가변적이기 때문에 인식에 많은 어려움이 따른다. 이러한 어려움을 극복하기 위한 방법에는 신경망을 이용하여 얼굴의 영역 정보를 가지고 데이터베이스를 구축하여 얼굴영역을 탐색하는 방법과 얼굴의 대칭성을 이용한 대칭 영역 탐색이 있다. 신경망을 이용하는 방법은 사전 정보를 가져야만 하며, 대칭성을 이용한 방법은 계산 시간이 오래 걸린다는 단점을 가지고 있다. 따라서 본 논문에서는 대칭성의 계산 속도 개선 및 데이터베이스 구축없이 얼굴 영역을 추출할 수 있도록 축소 영상에서 대칭 영역 탐색을 이용해 대칭성을 파악한 후 이러한 대칭성을 이용하여 원영상에 적용 한 후 정확한 얼굴 영역을 추출하기 위해 축소영상에서의 추출된 영역에서 대칭 영역 탐색을 하여 얼굴영역을 찾아내는 방법이다. 정면, 안경이 있는 영상에 실험해본 결과 얼굴 인식에 적합한 얼굴영역을 추출 할 수 있었다.
일반적으로 현실(특히 도시) 교통망에서 교차로를 반복해서 방문하는 통행은 존재하지만, 가로를 반복해서 주행하는 현상은 존재하지 않는다. 교통망에서의 루프형 통행은 링크의 반복이 허용되지 않는 링크 비루프(Link Loopless Path) 통행으로 축소된다. 본 연구에서는 K개의 경로탐색에서 기존의 방식과 달리 Heap Ordered Tree를 이용하여 월등한 수행속도(최악의 경우) O(m+ n log n+ K log K)로서 수행되는 Eppstein 알고리즘과 Jimenez et al의 LVEA을 고찰하여, 이들 알고리즘의 문제점인 링크루프의 발생을 제어하는 방안을 제어하도록 한다. 사례연구를 통하여 제안된 알고리즘을 검증 평가한다.
본 논문에서 우리는 이종사업자망이 연동된 통합망 환경에서 네트워크 성능 저하 구간을 탐색하기 위해 RTCP(Real-time Transport Control Protocol)의 타임스탬프 정보를 이용한 네트워크 구간별 지연 시간을 측정할 수 있는 트래픽 모니터링 방안을 제안한다. 실시간 멀티미디어 서비스(IPTV, VoIP)의 이용이 증가함에 따라 이종망간 연동 환경에서 실시간 서비스에 대한 QoS 관리 방안이 반드시 필요하다. 영상회의, VoIP(Voice over IP) 및 IPTV 서비스와 같은 멀티미디어 서비스는 네트워크 성능(지연, 지연변이 및 패킷 손실)에 매우 민감하기 때문에 연동망 환경에서 서비스 품질이 저하될 경우 어느 네트워크 구간에서 성능 저하가 발생하였는지 탐색하는 것은 매우 중요한 문제이다. 이에 우리는 RTCP 패킷을 이용한 구간별 지연시간 측정 방안을 제안하며 이 방안을 통해 네트워크 성능 저하가 발생한 구간을 탐색하고 정의할 수 있다.
본 논문에서는 다층 퍼셉트론 신경망 학습을 위한 새로운 두 단계 학습방법을 제안하고 이를 옵션 가격결정 모형에 응용하였다. 제안된 신경망 학습 알고리즘의 첫번째 단계는 Levenberg-Marquardt 알고리즘을 이용하여 빠르게 국소최적해를 찾는 것이고 두 번째 단계는 첫 번째 단계에서 찾은 국소최적해가 원하는 수준에 미치지 못할 경우 선형탐색 터널링을 이용해서 더 나은 해를 찾는 것이다. 이 두 단계를 반복적으로 수행함으로써 연결가중치 공간에서 구하고자 하는 해를 빠르고 안정적으로 찾을 수 있다. 현재 옵션가격결정 모형으로 많이 이용되고 있는 Black-Scholes 모형의 문제점을 극복하기 위해서 제안된 신경망 모형을 옵션가격결정 문제에 사용하였다. 이 모형을 KOSPI200 옵션 데이터로 실험한 결과 Black-Scholes 모형에 비해 검증오차를 60% 가량 줄일 수 있었다.
퍼지 논리의 추론과정에서 일부의 정보가 무시되어 적절하지 못한 추론 결과를 초래 할 수 있다. 한편 신경망은 패턴 처리에는 적합하지만 인간의 지식을 모델링하기 위해서 필요한 논리적인 추론에는 부적합하다. 그러나 신경망의 변형인 신경 논리망을 이용하면 논리적인 추론이 가능하다. 따라서 본 논문에서는 기존의 신경 논리망을 기반으로 하는 추론네트워크를 확장하여 퍼지 추론 네트워크를 구성한다. 그리고 기존의 추론 네트워크에서 사용되는 전파규칙을 보완하여 적용한다. 퍼지 추론 네트워크상에서 퍼지 규칙의 실행부에 해당하는 명제의 믿음 값을 결정하기 위해서는 추론하고자 하는 명제에 연결된 노드들을 탐색해야 한다.
유전자 알고리즘을 사용하여 신경망의 가중치를 학습하는 방법은 역전파 알고리즘이 가지는 여러 가지 문제점을 해결하기 위해 제안되었으나, 유전자 알고리즘 역시 전역 탐색이 아니기 때문에 실세계의 데이터에 적용하기 어려운 가장 큰 장애 요소인 지역 최소점 문제를 완벽하게 해결할 수는 없다. 이러한 지역 최소점 문제를 완화하기 위해 본 논문에서는 기생체-숙주 공진화 현상을 기반으로 한 유전자 알고리즘을 사용한 경쟁 공진화 신경망 학습 방법을 제시하고 있다. 경쟁 공진화는 서로 다를 개체간의 경쟁적인 진화를 통해 궁극적으로 보다 적합도가 높은 개체가 생성되는 이론을 기반으로 하고 있다. 이러한 경쟁 공진화를 통한 신경망 가중치의 학습이 일반적인 유전자 알고리즘을 사용하여 신경망을 학습시키는 것보다 더욱 우수한 가중치 집단을 탐색할 수 있음을 두 종류의 기계 학습 데이터를 통해 입증하였다.
오늘날 복잡한 네트워크 망을 가지게 됨에 따라 네트워크 기기들의 자산식별은 관리 및 보안관점에서 중요한 사항으로 대두되고 있다. 이러한 자산들은 네트워크 망에 연결되어 있기 때문에 네트워크망 구조를 알아내고, 각 자산의 위치 및 연결 상태를 확인하는 것 또한 중요하다. 이는 네트워크 구조상의 취약점들을 밝혀내는데 사용되어지고, 이를 통하여 취약점을 보완할 수 있다. 하지만 적은 리소스를 가지는 사물인터넷의 네트워크 망에서는 네트워크 구조를 알아내기 위하여 모니터들이 보내는 Traceroute 패킷이 사물인터넷 기기들에게 과부하를 줄 수 있다. 이를 위하여 본 논문에서는 기존에 사용 되던 더블 트리 알고리즘을 효과적으로 발전시킴으로써 사물인터넷이 이루는 네트워크 망의 부하를 줄인다. 이러한 부하 균형을 이루기 위하여 이 논문에서는 새로운 목적지 매칭 알고리즘을 제시하고, 통계학적으로 현재 탐색하고 있는 경로와 가장 겹치지 않은 경로로 탐색을 시도한다. 이를 통해서 네트워크의 부하 균형을 이루고, 부가적으로 모니터의 리소스 사용을 균등하게 한다.
시간 종속적 가로망에 대한 최단경로 탐색은 ITS분야의 경로 일정계획과 실시간 내비게이션 시스템에서 중요한 부분을 차지한다. 본 연구에서는 매시간간격 변동적인 링크 통행속도를 고려하는 one-to-one 시간 종속적 최단시간 경로 알고리즘을 제시한다. 이를 위해, 먼저 기존의 일반적인 최단거리 경로 알고리즘 중에서 실제 도로망에서 비교적 빠르고 효율적인 알고리즘으로 알려져 있는 3가지의 알고리즘들, 즉, two queues 구조를 가진 Graph growth 알고리즘, approximate buckets 구조를 가진 Dijkstra 알고리즘, double buckets 구조를 가진 Dijkstra 알고리즘이 선택되었다. 이 알고리즘들은 모두 네트워크 내 하나의 노드에서 모든 노드(one-to-all)로의 최단거리 경로를 빠르게 탐색하기위해 개발되었다. 선택된 알고리즘들은 시간 종속적 도로망에 대해 하나의 출발노드에서 하나의 목적노드(one-to-one)로의 최단시간 경로 탐색이 가능하도록 확장된다. 또한, 제안된 3가지의 시간 종속적 최단시간 경로탐색 알고리즘들은 미국의 Anaheim, Baltimore, Chicago, Philadelphia 4개 도시의 실제 가로망에 적용하여 검증 평가된다. 결과적으로, 도시부 가로망을 대상으로 한 시간 종속적 최단시간 경로탐색 알고리즘으로 double buckets 구조를 가진 확장된 Dijkstra 알고리즘이 추천된다.
건설된 도로를 효율적으로 이용하고, 통행자의 편리성을 향상시키기 위해 첨단 여행자 정보체계(ATIS)를 활용할 수 있다. ATIS 체계하에서 노선정보를 통행자에게 제공하기 위해서는 교차로에서의 회전으로 인한 지체를 정확하게 반영할 수 있는 효율적인 최단경로 알고리즘이 필요하다. 하지만 기존의 최단경로탐색 알고리즘은 좌회전 금지, U-turn, P-turn 등 교차로에서의 회전으로 인한 지체를 정확히 반영 못한다는 단점을 갖고 있다. 그러므로 본 논문에서는 이러한 단점을 극복하기 위해 수정형 덩굴망 알고리즘을 재발하였다. 수정형 덩굴망 알고리즘은 노드표지(node labelling) 방법에 있어서는 기존의 덩굴망 알고리즘의 노드표지 방법과 개념적으로 동일하여 이용상의 편리성을 갖도록 하였으며, 최단경로 탐색기능에 있어서는 링크탐색알고리즘(혹은 링크표지기법)이 갖고 있는 장잠을 다 반영할 수 있는 기법으로 개발하였다. 수정형 덩굴망 알고리즘은 노드표지에 있어 특정 노드로 유입하는 방향에 따라 노드표지를 별도로 기록하였다. 따라서 교차로에서의 좌회전, 우회전 및 직진은 물론 U-turn의 경우에도 추가적인 절차 없이 현실적인 최단 경로를 탐색할 수 있도록 하였다. 또한 본 논문은 최단경로의 역추적 방법을 개선하여 좌회전 금지, U-turn, P-turn 및 기타 회전에 의한 지체등을 각 교차로마다 정확히 반영함으로써 비합리적인 최단경로가 추적되는 것을 근본적으로 차단하도록 하였다. 따라서 본 연구에서 개발한 수정형 덩굴망 최단경로탐색 알고리즘은 교차로에서의 회전지체 및 회전금지를 현실적으로 잘 반영함으로써 정확한 노선정보를 요구하는 ATIS체계를 분석하는데 유용하게 활용될 수 있는 기법이다.장자료를 통해 구하기란 현실적으로 불가능하므로, 본 연구에서는 이러한 제약점을 극복할 수 있는 근사적인 지체시간을 계산하는 방법을 제시한 점에서 의미를 갖을 수 있다.수들은 직업의 선택이나 소득을 예측하기 위한 요소들로 포함될 수 없었다. 따라서 후속연구에서는 이를 보완해야 할 것이며, 최근 들어 우리 나라에서도 재택근무에 대한 관심이 대두되고 있으나 아직 개념정의나 그 중요성과 가치, 그리고 실태 파악과 같은 연구가 활발히 이루어지지 못하고 있으므로 이에 대한 심층적인 연구가 행해져야 할 것이다.d similar flower proceeding dates in all branches. but "Daepung" showed similar flower proceeding dates in all branches.est in HB. Mean period of wetting duration was in the order of DS>HB>MB, while the dew point depression was greatest in DS.ANCOVA, Pearson correlation을 이용하여 분석하였으며, 그 결과는 다음과 같다. 캠프 프로그램은 소아 당뇨병 환자의 자기 효능을 증진시키고 환자 역할 행위 이행을 높여주는데 효과적 이었다. 소아 당뇨병 환자의 자기 효능은 환자 역할 행위 이행과 순 상관 관계가 있어, 자기 효능이 증진될수록 환자 역할 행위 이행 정도가 높아졌다. 무조건 사주지 않는다(8.0%), 무조건 사준다(3.1%)로 식품광고에 나오는 식품 요구시 부모의 70.3%가 거절하는 것으로 나타났다. 거절 이유는 건강에 나쁘다는 것이 가장 큰 이유였으며 강남과 강북 어린이간에 유의적인 차이가 있었다
본 연구는 기존의 수요 예측 등의 시계열 연구에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial neural network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 훈련 자료로는 2015년 3월부터 9월까지의 일별 KBO 관중 수 자료를 대상으로 하였다. 전방향 신경망(Feedforward neural network)의 모형 훈련 과정에서, 그리드 탐색(Grid search)을 적용하여 최적의 초모수(Hyperparameter)를 찾고자 하였다. 그 결과, 그리드 탐색법의 최적 모형을 이용한 평균 절대 백분율 오차(MAPE)는 평균 20.9% 였다. 앙상블 기법을 이용한 모형의 MAPE는 평균 20.0%였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 26.3%, 30.3% 높은 예측력을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.