• Title/Summary/Keyword: 망간산화

Search Result 271, Processing Time 0.027 seconds

Magnetic Properties of Mn-substituted Magnetite Thin Films (망간 치환된 마그네타이트 박막의 자기적 특성 연구)

  • Lee, Hee-Jung;Kim, Kwang-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.262-266
    • /
    • 2007
  • Polycrystalline $Mn_xFe_{3-x}O_4$ thin films were synthesized on Si(100) substrates using sol-gel method and the effects of Mn substitution on the structural, magnetic, and magnetotransport properties were analyzed. X-ray diffraction revealed that cubic structure is maintained up to x = 1.78 with increasing lattice constant for increasing x. Such increase of the lattice constant is attributable to the substitution of $Mn^{2+}$ (with larger ionic radius) ions into tetrahedral $Fe^{3+}$(with smaller ionic radius) sites. VSM measurements revealed that $M_s$ does not vary significantly with x, qualitatively explainable by comparing spin magnetic moments of Mn and Fe ions. On the other hand, $H_c$ was found to decrease with increasing x, attributable to the decrease of magnetic anisotropy due to the decrease of $Fe^{2+}$ density through $Mn^{2+}$ substitution. Magnetoresistance (MR) of the $Mn_xFe_{3-x}O_4$ films was found to decrease with increasing x. Analysis of the MR data in comparison with the VSM results gives an indication of the tunneling of spin-polarized carriers through the grain boundaries of the polycrystalline samples at low external field and spin-flip of the carriers at high external field.

Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter (해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성)

  • 현정호;이홍금;권개경
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.210-224
    • /
    • 2003
  • Sulfate reduction is a microbiological process which occurs ubiquitously in anaerobic marine environment. Sulfate reducing bacteria play a significant role in anaerobic decomposition of organic matter and regeneration of inorganic nutrients which supports the primary production in the water column (i.e., benthic-pelagic coupling) and, in special case, could be responsible for the harmful algal bloom in the coastal marine environment. Summary of the sulfate reduction rates reported in various marine sedimentary environments revealed that supply of organic substrates and presence of various electron acceptors (i.e., $O_2$, NO$_{3}$$^{[-10]}$ , Fe(III) and Mn(IV), etc.) for other aerobic and anaerobic respiration directly affect the sulfate reduction rate and relative significance of sulfate reduction in organic matter mineralization. Significance of temperature, macrophytes and bioturbation is discussed as factors controlling supply of organic substrates and distribution of electron acceptors. Finally, we suggest studies on the anaerobic microbiological processes associated with biogeochemical element cycles in the coastal environments of Korea where massive operation of organic enriched fish cage farm, frequent occurrence of toxic algal bloom and hypoxia and conservation of tidal flat are of major environmental issues.

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF

Phase Transition and Surface Morphological Characteristics of Intermediate Product Feitknechtite According to Aging Time during the Synthesis of Birnessite (버네사이트 합성 시 에이징 시간에 따른 중간생성물 페이크네타이트 상전이 및 표면 형태학적 특성)

  • Min, Soyoung;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.213-222
    • /
    • 2019
  • Birnessite (birnessite, $7{\AA}$ manganate, ${\delta}-MnO_2$) is a major mineral comprising manganese nodule. Various synthetic methods have been studied and evaluated because it can be used as an ion exchange agent and a battery recharging material. However, it is difficult to obtain a single birnessite phase because it does not have a stoichiometric chemical composition. Feitknechtite (${\beta}-MnOOH$) is formed as an intermediate product during birnessite synthesis and in this study, the transition of this phase to birnessite was compared by using XRD and SEM. Two different methods, Feng et al. (2004) and Luo et al. (1998), based on redox reaction were used. It was possible to obtain the impurity-free birnessite for the sample aged 60 days at $27^{\circ}C$ by Feng et al. (2004) method and 3 days at $60^{\circ}C$ by Luo et al. (1998) method. The phase transition rate of the feitknechtite phase was slower in the case of $Mg^{2+}$ doped birnessite which was synthesized by Luo et al. (1998) method, and almost single phase almost single phase birnessite was identified at high temperature. Crystal surface and morphology also confirmed the difference between the samples synthesized by two methods.

Transfer of Arsenic and Heavy Metals Existed as Acid Extractable and Reducible Formsfrom Flooded Soilsto Rice Plant (담수토양 내 비소 및 중금속의 존재형태(산추출형, 환원형)에 따른 식물체(벼) 전이특성)

  • Koh, Il-Ha;Kim, Jung-Eun;Ji, Won-Hyun
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.296-309
    • /
    • 2022
  • This study investigated the mobility of inorganic elements (As, Cd, Pb, and Zn) that existed as acid extractable and reducible forms in flooded soils with a pot experiment involving rice cultivation. In general, it is known that soil inorganic elements that existed as an acid extractable form which includes exchangeable, carbonates, non-specifically sorbed, and specifically sorbed have mobility. However, the result of the experiment revealed that each inorganic elements of rice roots grown from flooded soils had different characteristics. The concentrations of Arsenic existed as both forms and the concentrations of cadmium and lead existed as a reducible form in the soils showed a high causal relationship with the concentrations of those elements in the roots of rice plants. The concentrations of zinc, an essential plant element, didn't show a causal relationship. Therefore it is necessary to consider the soil's environmental characteristics such as drained/flooded condition, oxidation/reduction condition, etc. for the mobility assessment of inorganic elements. The concentrations of the reducible form of arsenic, cadmium, and lead in flooded environment such as a paddy field should be also considered because the mobility of these elements combined with Fe/Mn increases in the reduction condition.

Cs Fixation and Leaching Characteristics of High Temperature-Treated Todorokite (고온 처리된 토도로카이트의 Cs 고정 및 용출 특성)

  • Seongyeop Kim;Yeongkyoo Kim;Changyun Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • Todorokite is a manganese oxide mineral containing Mg2+ in a tunnel structure in which MnO6 octahedra share corners. In order to investigate the suitability and efficiency of high temperature-treated todorokite as a material for adsorption and fixation of Cs, Cs was ion exchanged and the amount of leached Cs from todorokite was measured. The todorokite used in this study was synthesized by transforming Na-birnessite to Mg-buserite and used as a precursor. After high temperature treatment, Cs exchanged todorokite changed to birnessite and hausmannite as the temperature increased. The amount of leached Cs was investigated for Cs exchanged todorokite which was reacted with distilled water and 1 M NaCl solution at different reaction times. In general, for the samples reacted with 1 M NaCl solution, the fixation of Cs was quite effective, although the amount of leached Cs was greater due to the ion exchange reaction with Na. As the treatment temperature increased, the amount of leached Cs increased and then decreased again, which was related to the mineral phases formed at each temperature. As birnessite was formed, the amount of leached Cs increased, but as birnessite decreased, that decreased again. As the mineral phase changed to hausemanite, the amount of Cs decreased rapidly. The results of our study show that Cs exchanged todorokite can be used as a material that effectively fixes Cs and prevents its diffusion by high temperature treatment.

Estimate of Manganese and Iron Oxide Reduction Rates in Slope and Basin Sediments of Ulleung Basin, East Sea (동해 울릉분지 퇴적물에서 망간산화물과 철산화물 환원율 추정)

  • Choi, Yu-Jeong;Kim, Dong-Seon;Lee, Tae-Hee;Lee, Chang-Bok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.127-133
    • /
    • 2009
  • In order to determine organic carbon oxidation by manganese and iron oxides, six core sediments were obtained in slope and basin sediments of Ulleung Basin in East Sea. The basin sediments show high organic carbon contents (>2%) at the water depths deeper than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. In the Ullleung Basin, the surface sediments were extremely enriched by Manganese oxides with more than 2%. Maximum contents of Fe oxides were found at the depth of $1{\sim}4cm$ in basin sediments. However, the high level of Mn and Fe oxides was not observed in slope sediment. Surface manganese enrichments (>2%) in Ulleung Basin may be explained by two possible mechanisms: high organic carbon contents and optimum sedimentation rates and sufficient supply of dissolved Manganese from slope to the deep basin. Reduction rates of iron and manganese oxides ranged from 0.10 to $0.24\;mmol\;m^{-2}day^{-1}$ and from 0.30 to $0.57\;mmol\;m^{-2}day^{-1}$, respectively. In Ulleung Basin sediments, $13{\sim}26%$ of organic carbon oxidation may be linked to the reduction of iron and manganese oxides. Reduction rates of metal oxides were comparable to those of Chilean upwelling regions, and lower than those of Danish coastal sediments.

Optimum Condition of Soil Dispersion for Remediating Heavy Metal-Contaminated Soils using Wet Magnetic Separation (중금속 오염 토양 정화를 위한 습식자력선별법 사용 시 최적 토양분산 조건)

  • Chon, Chul-Min;Park, Jeong-Sik;Park, Sook-Hyun;Kim, Jae-Gon;Nam, In-Hyun
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.121-135
    • /
    • 2012
  • Soil dispersion and heavy metal leaching with two heavy metal-contaminated soils were studied to derive the optimal dispersion condition in the course of developing the remedial technology using magnetic separation. The dispersion solutions of pyrophosphate, hexametaphosphate, orthophosphate and sodium dodecylsulfate (SDS) at 1 - 200 mM and the pH of solutions was adjusted to be 9 - 12 with NaOH. The clay content of suspension as an indicator of dispersion rate and the heavy metal concentration of the solution were tested at the different pHs and concentrations of the dispersion solution during the experiment. The dispersion rate increased with increasing the pH and dispersion agent concentration of the solution. The dispersion efficiency of the agents showed as follows: pyrophosphate > hexametaphosphate > SDS > orthophosphate. Arsenic leaching was sharply increased at 50 mM of phosphates and 100 mM of SDS. The adsorption of $OH^-$, phosphates and dodecysulfate on the surface of Fe- and Mn-oxides and soil organic matter and the broken edge of clay mineral might decrease the surface charge and might increase the repulsion force among soil particles. The competition between arsenic and $OH^-$, phosphates and dodecylsulfate for the adsorption site of soil particles might induce the arsenic leaching. The dispersion and heavy metal leaching data indicate that pH 11 and 10 mM pyrophosphate is the optimum dispersion solution for maximizing dispersion and minimizing heavy metal leaching.

Crystallization and Magnetic Properties of Iron Doped La-Ba-Mn-O (Fe이 치환된 LaBaMnO계 산화물의 중성자 회절 및 Messbauer분광학연구)

  • Choi, Kang-Ryong;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • The iron doped colossal magnetoresistance materials with La-Ba-Mn-O perovskites structure have been synthesized by chemical reaction of sol-gel methods. Their crystallographic and magnetic properties have been studied with x-ray diffraction, VSM, RBS, Mossbauer spectroscopy, and magnetoresistance measurements. The crystal structure of the La$\_$0.67/Ba$\_$0.33/Mn$\_$0.99/Fe$\_$0.01/ $O_3$ at room temperature was determined to be orthorhombic of Pnma. The lattice parameters a$\_$0/ and c$\_$0/ increased gradually, but b$\_$0/ deceased with increase of iron substitution. The magnetization and coercivity deceased, also the Curie temperature decreased from 360 K as x increased from 0.00 to 0.05. Magnetoresistence measurements were carried out, and the maximum MR ($\Delta$$\rho$/$\rho$(0)) was observed at 281 K, about 9.5 % in 10 kOe. The temperature of maximum resistance (R$\_$MAX/) decreased with increasing substitution of Fe ions and a semiconductor-metal transition temperature (T$\_$SC-M/) decreased too. This phenomena show that ferromagnetic transition temperature decreased by substituting Fe for Mn ions, it decreases double exchange interaction. This result accords with magnetic structure of neutron diffraction. Mossbauer spectra of La$\_$0.67/Ba$\_$0.33/Mn$\_$0.99/Fe$\_$0.01/ $O_3$were taken at various temperatures ranging from 15 to 350 K. With lowering temperature of the sample, two magnetic phases were increased and finally it showed the two sharp sextets of spectra at 15 K. The isomer shift at all temperature range is about 0.3 mm/s relative to Fe metal, which means that both Fe ions are Fe$\^$3+/ states.Fe$\^$3+/ states.

Characteristics of Stream and Soil Contamination from the Tailing Disposal and Waste Rocks at the Abandoned Uljin Mine (울진 폐광산의 매립광미와 폐광석에 의한 주변 토양 및 수계의 오염특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.63-79
    • /
    • 2008
  • Physicochemical characteristics of stream water, leachate, mine water and groundwater were investigated to estimate the influences of the tailing and waste rock from the abandoned Uljin mine area. Total extraction analysis and mineralogical studies were carried out to understand sulfide weathering and to determine the distributions of trace elements in the soil affected by mine waste (tailing, waste rock and leachate). The pH and EC value of the leachate from the tailing disposal ranged 2.9-6.0, $99{\sim}3,990{\mu}S/cm$, respectively, and the concentrations of dissolved major (up to 492 mg/l Ca; 83.8 mg/l Mg; 45.2 mg/l Na; 44.7 mg/l K, 50.8 mg/l Si) and trace elements (up to $826,060{\mu}g/l$ Fe; $131,230{\mu}g/l$ Mn; $333,600{\mu}g/l$ Al; $61,340{\mu}g/l$ Zn; $2,530{\mu}g/l$ Cu; $573{\mu}g/l$ Cd; $476{\mu}g/l$ Pb) were relatively high. The stream water showed the variation of dissolved metal concentrations in seasonally and spatially. The dissolved metal contents of the stream water increased by influx the leachate from the tailing disposal, but these of the down stream have been considerably decreased by mixing of dilute tributaries. The dissolved metal concentrations of the stream water at dry season (as February) were lower than these at rainy season (as May and July). These represent that the amounts of the leachate varied with season. However, stream water could not be effectively diluted by confluence with uncontaminated tributaries, because the flux of tributaries and streams reduced at dry season. Thus attenuations by dilution had been dominantly happened in rainy seasons. The order of accumulations of trace element in soils compared with background values revealed Mn>Fe>Pb>Cu>Zn. Sulfide minerals were mainly pyrrhotite, sphalerite and galena and chalcopyrite. Pyrrhotite was rapidly weathered along the edge and fractures, and results in the formation of Fe-(oxy)hydroxides, which absorbed a little amount of Zn.