• Title/Summary/Keyword: 말뚝 재활용

Search Result 7, Processing Time 0.023 seconds

Structural Capacity of High Strength Steel Pipe Pile After Pile Driving (고강도 강관말뚝의 항타후 구조성능 분석)

  • La, SeungMin;Yoo, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.251-258
    • /
    • 2011
  • Steel pipe piles have been used as various deep foundation materials for a long time. Recent increase in steel material cost has made engineers reluctant in using it even with its good quality and ease of construction. Therefore when constructing with steel pipe pile, the decision to reuse the excessive pile length that is cut off from the designed pile head elevation after pile driving can be cost saving. This has caused many constructors to reuse the pile leftovers with new piles, but the absence of quantitative structural capacity behaviors of steel pipe pile after pile driving or appropriate countermeasures and standards in reusing steel pipe pile has resulted in wrong applications, pile structural integrity problems, inappropriate limitation of reusable pile length, etc. The structural performance analysis between a new pile and a pile that has undergone working state and ultimate state stress level during pile driving was performed in this research by means of comparing the results between the dynamic pile load test, tensile load test, charpy energy test and fatigue test for high strength steel of $440N/mm^2$ yield strength. Test results show that under working load conditions the yield strength variation is less than 2% and for ultimate load conditions the variation is less than 5% for maximum total blow count of 3000. The results have been statistically analyzed to check the sensitivity of each factors involved. From the test results, reusability of steel pipe pile lies not in the main pipe yield strength deviation but in the reduction of absorb energy, strength changes and quality control at the welded section, shape deformation and local buckling during pile driving.

Analysis of the Applicability of Ground Stabilizer Using Recycled Resources as Prebored Piles (매입말뚝 주면고정액으로 순환자원을 재활용한 지반안정재의 활용 가능성 분석)

  • Seo, Se-Gwan;Song, Sang-Huwon;Cho, Dae-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.287-294
    • /
    • 2021
  • In this study, tests were performed to analyze the feasibility of using the ground stabilizer from recycled resources such as blast furnace slag powder as filling material of prebored piles. For this, specimens were prepared by applying 70% and 83% of the general water/binder ratio of the filling material of prebored piles. And compression test, model test, and shaking table test were performed to determine the compressive strength, skin friction on the surface between prebored pile and filling material, and seismic performance of ground stabilizer. As a result of the tests, the compressive strength exceeded the relevant domestic standards, and the skin friction was equivalent to that of ordinary portland cement. In addition, the amount of vertical and horizontal displacement caused by earthquakes was found to be much smaller than the domestic standard. Therefore, when considering the test results comprehensively, it is judged that the feasibility of using a ground stabilizer from recycled resources as filling material for prebored pile is sufficient.

Application of Copper Slag as a Substitute for Sand in Sand Compaction Pile (모래다짐말뚝의 모래대체재로서 동슬래그의 활용)

  • 천병식;정헌철
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.195-207
    • /
    • 2002
  • The domestic, quantity of copper slag as a by-product at copper smelting process reaches 700,000 tons annually while its application is limited. Therefore, the secure disposal plan of copper slag is urgently required. For this reason, in this study, copper slag was used as a substitute for sand in Sand Compaction Pile that is one of the improvement methods of soft ground because the particle size distribution of copper slag ranges from 0.15mm to 5m(coarse state) and it maintains stable glassy state environmentally. The geotechnical characteristics of copper slag were evaluated through laboratory model tests and the field application of copper slag was compared with generally used sand by pilot tests. From these experimental results, copper slag's material characteristics, bearing capacity, settlement reduction and improvement effects of surrounding ground were found to be superior to generally used sand. The copper slag can be used as a substitute far sand in the Sand Compaction Pile method and as recycling material of industrial by-product with high econonical and environmental value when natural resources are being exhausted.

Characteristics of Crushed Oyster-shell as a Substitute of Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 재료로서 파쇄 굴패각의 특성조사)

  • 윤길림;윤여원;채광석;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.281-290
    • /
    • 2003
  • In order to investigate recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including permeability, confined compression and shear strength of crushed oyster shell were quantitatively examined in terms of fineness modulus and relative density of crushed oyster-shell. Experimental results show that the crushed oyster-shells are lighter than sand in weight, and have similar characteristics on permeability and shear strength to sandy soils. The oyster-shell can be considered as highly crushable material but not much crushable with existing high loads. Based on the laboratory test results, it is highly fudged that the crushed oyster-shell can be a substitute of sand as SCP materials.

Remediation of a Low Permeable Soil by Environmental Double Pile (환경이중파일 기법에 의한 저투수성 오염토양의 정화)

  • 박상규;이기호;박준범;임만빈
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.243-252
    • /
    • 2003
  • Environmental Double Pile method was presented as a device to improve low permeable contaminated soil. EDP is one of the latest technology in a concept of one step process that is applied to low permeable contaminated ground to reutilize the site by enhancing drainage, contaminated remediation, bearing capacity of piles. In order to evaluate on-site applicability of this technology, qualities of EDP's drainage, strength and remediation were assessed through a series of experiments; EDP was verified to achieve remediation and improvement of soft ground.

Characteristics on Shear Strength and Clogging Phenomenon of Bottom Ash and Rammed Aggregate Mixture Compaction Pile (쇄석과 저회의 혼합다짐말뚝의 전단강도와 Clogging 현상 규명)

  • Lee, Dongyeup;Kang, Hyongnam;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.33-41
    • /
    • 2010
  • The rammed aggregate compaction pile method is widely used as soft ground improvement method because of the installed piles improve not only overall composite capacity but also discharge capacity. But the discharge capacity is declined when the clogging is generated due to the clay penetration into voids of rammed aggregate compaction pile with the time elapsed. The purpose of this study is to reduce the clogging problem occurred in rammed aggregate compaction pile constructed in the soft ground and to minimize voids of rammed aggregate compaction pile. The proper mixing ratio was determined which is based on the results of the large scale direct shear tests conducted to get strength and permeability as optimum mixing ratio of crushed stone and bottom ash. The test results indicated that the highest internal friction angle was obtained at 80:20 mixing ratio of crushed stone and bottom ash. The internal friction angle was declined when the mixing ratio of the bottom ash increased over 20%. The results of the clogging tests, presented that the mixture of 80:20 crushed stone and bottom ash is highest effective of clogging than ratio of pure crushed stone.

Applicability of Solidified Soil as a Filling Materials in the Drilling of the Bored-precast Pile (매입말뚝 시공시 현장토를 활용한 고화처리 충전재의 현장 적용성 평가)

  • Kim, Khi-Woong;Park, Jeong-Jun;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. As results, the flowability, segregation and bleeding, and bond strength of filling materials was a good performance than that of the existing cement paste. But the skin friction of pile by PDA was slightly decreased than that of the existing cement paste. However, as pile filling materials, and in terms of economics and environment, the applicability of filling material is considered very effective.