• Title/Summary/Keyword: 말뚝강성

Search Result 156, Processing Time 0.023 seconds

Application and Verification of Coupled Analysis of Piled Piers (교량 말뚝기초 해석기법의 적용성 분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.123-134
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method (YSGroup) was developed considering nonlinear pile head stiffness matrices and compared with other analytical methods (elastic displacement method, Group 6.0 and FBPier 3.0). In this method, a pile cap was modelled by four-node flat shell element, a pier was modelled using 3 dimensional beam element, and individual piles were modelled as beam-column elements. Through the comparative studies on a piled pie. subjected to lateral loads in linear soil, it was found that present method (YSGroup), elastic displacement method and Group 6.0 gave similar results of lateral pile head displacement, but FBPier 3.0 was estimated to show somewhat larger displacements than those from the three methods. Displacements of superstructure (pier), including nonlinear soil behavior, could be estimated by present method (YSGroup) and FBPier 3.0 because these two methods modelled the superstructure directly by finite element techniques. It was found that pile groups in pinned pile head condition had a tendency to cause excessive rotation of the pile cap.

Dynamic Analysis of Soil-Pile-Structure Interaction Considering a Complex Soil Profile (복잡한 지반층을 고려한 지반-말뚝-구조물의 상호작용 동해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • The precise analysis of soil-pile-structure interaction requires a proper description of soil layer, pile, and structure. In commonly used finite element simulations, mesh boundaries should match the material discontinuity line. However, in practice, the geometry of soil profiles and piles may be so complex that mesh alignment becomes a wasteful and difficult task. To overcome these difficulties, a different integration method is adopted in this paper, which enables easy integration over a regular element with material discontinuity regardless of the location of the discontinuity line. By applying this integration method, the mesh can be generated rapidly and in a highly structured manner, leading to a very regular stiffness matrix. The influence of the shape of the soil profile and piles on the response is examined, and the validity of the proposed soil-pile structure interaction analysis method is demonstrated through several examples. It is seen that the proposed analysis method can be easily used on soil-pile-structure interaction problems with complex interfaces between materials to produce reliable results regardless of the material discontinuity line.

Estimation on End Vertical Bearing Capacity of Double Steel-Concrete Composite Pile Using Numerical Analysis (수치해석을 이용한 이중 강-콘크리트 합성말뚝 연직지지력 평가)

  • Jeongsoo, Kim;Jeongmin, Goo;Moonok, Kim;Chungryul, Jeong;Yunwook, Choo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.5-15
    • /
    • 2022
  • Conventionally, because evaluation methods of the bearing capacity for double steel pipe-concrete composite pile design have not been established, the conventional vertical bearing capacity equations for steel hollow pile are used. However, there are severe differences between the predictions from these equations, and the most conservative one among vertical bearing capacity predictions are conventionally adopted as a design value. Consequently, the current prediction method for vertical bearing capacity of composite pile prediction composite pile causes design reliability and economical feasibility to be low. This paper investigated mechanical behaviors of a new composite pile, with a cross-section composed of double steel pipes filled with concrete (DSCT), vertical bearing capacities were analyzed for several DSCT pile conditions. Axisymmetric finite element models for DSCT pile and surrounding ground were created and they were used to analyze effects on behaviors of DSCT pile pile by embedding depth, stiffness of plugging material at pile tip, height of plugging material at pile tip, and rockbed material. Additionally, results from conventional design prediction equations for vertical bearing capacity at steel hollow pile tip were compared with that from numerical results, and the use of the conventional equations for steel hollow pile was examined to apply to that for DSCT pile.

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles (조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.143-162
    • /
    • 1998
  • In the present study, a procedure to predict the depth from the ground surface to the center of bulging failure zone in each of the square granular group piles under a rigid mat foundation is proposed. This analytical procedure is established on the basis of the conical modeling of bulging failure shape and the replacement ratio of soft foundation soils. considering the effect of a share of procedure to estimate the ultimate cylindrical pressure in the area reinforced with granular piles and the ultimate bearing capacity of each of granular piles in group. This analytical procedure is also established on the basis of the pre-determined depth to the zone of bulging failure and an iterative solution technique. Finally the analytical procedures proposed in this study are verified by analyzing the results of 3D finite element analyses, and the predictions of ultimate bearing capacity of granular piles are compared with the results obtained from the tests, empirical equation and 3D finite element analyses.

  • PDF

Prediction of the Natural Frequency of Pile Foundation System in Sand during Earthquake (사질토 지반에 놓인 지진하중을 받는 말뚝 기초 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Sun-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • It is important to calculate the natural frequency of a piled structure in the design stage in order to prevent resonance-induced damage to the pile foundation and analyze the dynamic behavior of the piled structure during an earthquake. In this paper, a simple but relatively accurate method employing a mass-spring model is presented for the evaluation of the natural frequency of a pile-soil system. Greatly influencing the calculation of the natural frequency of a piled structure, the spring stiffness between a pile and soil was evaluated by using the coefficient of subgrade reaction, the p-y curve, and the subsoil elastic modulus. The resulting natural frequencies were compared with those of 1-g shaking table tests. The comparison showed that the natural frequency of the pile-soil system could be most accurately calculated by constructing a stiffness matrix with the spring stiffness of the Reese (1974) method, which utilizes the coefficient of the subgrade reaction modulus, and Yang's (2009) dynamic p-y backbone curve method. The calculated natural frequencies were within 5% error compared with those of the shaking table tests for the pile system in dry dense sand deposits and 5% to 40% error for the pile system in saturated sand deposits depending on the occurrence of excess pore water pressure in the soil.

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

A Study on Design of Earth-Retaining Structure Constructed by a Row of Bored Piles (주열식(柱列式) 흙막이벽(壁)의 설계(設計)에 관한 연구(研究))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 1985
  • A row of bored piles has been used in several excavation works to retain the earth. This excavation bracing system has much effect on low-vibration and low-noise during construction. The system is also effective to provide protection to the adjacent existing ground and structures. For the purpose of establishment of a logical design method for the bored piles, first, a theoretical equation to estimate the resistance of piles is derived. Because arching action of soils between piles is considered in the equation, the characteristics of soils and the installation condition of piles would be considered logically from the beginning. Then a method is investigated to decide the interval ratio of piles. According to the method, the interval between piles can be decided from the information of the Peck's stability number, the coefficient of lateral earth pressure and the internal friction angle of soil. Finally, a design method is presented for the bored piles used for excavation work. In the presented design method, such factors as depth of excavation, pile diameter, interval between piles, pile length below bottom of excavation and pile stiffness, can be selected systematically.

  • PDF

Evaluation of Lateral Subgrade Reaction Coefficient Considering Empirical Equation and Horizontal Behavior Range of Large Diameter Drilled Shaft (경험식을 통한 대구경 현장타설말뚝에 대한 수평지반반력계수와 수평거동 영향범위의 평가)

  • Yang, Woo-Yeol;Hwang, Tae-Hyun;Kim, Bum-Joo;Park, Seong-Bak;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • The lateral bearing characteristics of large diameter drilled shaft depend greatly on the stiffness of the pile, horizontal subgrade reaction of adjacent ground. In particular, the empirical evaluation results of the horizontal subgrade reaction coefficient which are widely used in pile design are very important factors in evaluating the lateral bearing capacity of drilled shaft because the difference in bearing capacity depends on the estimated result. Nevertheless, the evaluation of the horizontal subgrade reaction coefficient on the large diameter drilled shaft is insufficient. In addition, although the range of influence and the location of the maximum moment which is the weaken zone on the pile may be correlated and relationship of these are major consideration in determining the reinforced zone of drilled shaft, the previous studies have not been evaluated it. In this study, the field test and nonlinear analysis of large diameter drilled shaft were performed to evaluate the horizontal subgrade reaction coefficient and to investigate the relationship between the influence range 1/β of the pile and the location of the maximum moment zm. In the result, the lateral bearing capacity of drilled shaft showed a difference in results by about 190% according to the empirical equation on the horizontal subgrade reaction coefficient. And the relationship between the influence range of the pile and the location of the maximum moment was evaluated as a linear relationship depending on the soil density.

Dynamic Behavior Characteristics of Group Piles with Relative Density in Sandy Soil (건조 모래지반의 상대밀도에 따른 무리말뚝의 동적거동특성)

  • Heungtae Kim;Hongsig Kang;Kusik Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2023
  • The lateral load which is applied to the pile foundation supporting the superstructure during an earthquake is divided into the inertia force of the upper structure and the kinematic force of the ground. The inertia force and the kinematic force could cause failure to the pile foundation through different complex mechanisms. So it is necessary to predict and evaluate interaction of the ground-pile-structure properly for the seismic design of the foundation. The interaction is affected by the lateral behavior of the structure, the length of the pile, the boundary conditions of the head, and the relative density of the ground. Confining pressure and ground stiffness change accordingly when the relative density changes, and it results that the coefficient of subgrade reaction varies depending on each system. Horizontal bearing behavior and capacity of the pile foundation vary depending on lateral load condition and relative density of the sandy soil. Therefore, the 1g shaking table tests were conducted to confirm the effect of the relative density of the dried sandy soil to dynamic behavior of the group pile supporting the superstructure. The result shows that, as the relative density increases, maximum acceleration of the superstructure and the pile cap increases and decreases respectively, and the slope of the p-y curve of the pile decreases.

Development of the Hybrid CFFT Pile (FRP-콘크리트 합성말뚝의 개발)

  • Choi, Jin-Woo;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.20-28
    • /
    • 2010
  • In this paper, new type CFFT (Concrete Filled FRP Tube) was suggested in order to improve the flexural stiffness. Since the existing CFFT was produced by filament winding process, re-bar for concrete may be necessary in order to ensure structural safety under flexure re-bar. In comparison with existing type CFFT, new type CFFT was reinforced by circular shaped pultrusion FRP without re-bar. Filament winding FRP was attached to the outer layer of pultrusion FRP. Structural behavior of new type CFFT filled with concrete (HCFFT) was investigated by the mechanical property test for the component element and the FE analysis. Furthermore, compressive strength of the HCFFT member based on the equation suggested in previous studies.

  • PDF