• Title/Summary/Keyword: 말뚝강성

Search Result 156, Processing Time 0.022 seconds

Effect of Pile Construction on Lateral Behavior of Single Rigid Pile in Sand (사질토 지반에서 단일 강성말뚝의 수평거동에 대한 시공방법의 영향)

  • 김병탁;김영수;서인식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.29-44
    • /
    • 1999
  • This paper shows the results of model tests on the lateral behavior of single rigid pile, which was constructed by driving, in homogeneous and non-homogeneous (two layered) NakDong River sands. The purpose of the present paper is to investigate the effect of ratio of lower layer thickness to embedded pile length, relative density of sand and pile construction conditions (Driven & Embedded piles) on the characteristics of lateral behavior of single pile. These effects can be quantified only by the results of model tests. As a model result, the lateral behavior depends upon the pile construction condition in loose-density soil more than in high-density soil. If the pile construction depends upon driving construction, the decrease of deflection remarkably increases for both loose homogeneous sand and non-homogeneous soil$(E_{h1}/E_{h2}/=0.18)$ with high thickness of upper layer but the decrease of maximum bending moment shows the opposite result to the decrease of deflection. And, with respect to deflection, it was found that the deflection ratio $(y_{Driven}y_{Embedded})$ of embedded to driven piles has the ranges of 0.65 - 0.88 $(D_r=90%)$0.38 - 0.65 $(D_r=61.8%)$ for each relative density of homogeneous soil and the range of 0.6 - 0.88 for non-homogeneous soil. Also, in this study, the experimental equation for the effects of drop height (DH) and H/L on the ratios of $y_D/y_E\; and MBM_D/MBM_ E$ is suggested from model tests.

  • PDF

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF

Evaluation of Behaviors in Abutment Transition Zone Depending on Constrution Orders and Number of Piles (뒤채움 시공순서 및 말뚝 수에 따른 교대 접속부 거동평가)

  • Kim, Ung-Jin;Jeong, Rag-Gyo;Kim, Dae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The RAR (Reinforced Abutment for Railways) is an economical abutment to reduce the settlement of a transitional zone and horizontal displacement of an abutment by constructing backfill before the abutment. In this paper, the performance of the RAR depending on the pile installation was evaluated using 2D (Dimensional) finite element analysis and compared with the existing abutment (with 5 rows pile). Numerical analysis showed that increasing pile installation is more effective in reducing horizontal displacement and earth pressure than settlement of the transitional zone. The horizontal displacement and earth pressure of the RAR was approximately 26~37% and 59~83% compared to the existing abutment by changing the pile installation. More pile installation led to a greater reduction of the horizontal displacement and earth pressure of the RAR. In addition, the horizontal earth pressure of RAR is influenced considerably by the reinforcement, pile, foundation, and stiffness of the ground.

Laboratory Model Tests on the Load Transfer in Geosynthetic-Reinforced and Pile-Supported Embankment System (토목섬유보강 성토지지말뚝시스템에서의 하중전이 효과에 관한 모형실험)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.9-18
    • /
    • 2010
  • A series of model tests were performed to investigate the load transfer by soil arching in geosynthetic-reinforced and pile-supported(GRPS) embankment systems. In the model tests, model piles with isolated cap were inserted in the model container and geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by rubber form. The loads acting on pile caps and the tensile strain of geosynthetics were monitored by data logging system. At the given interval ratio of pile caps, the efficiency in GRPS embankment systems increased with increasing the height of embankment fills, then gradually converged at constant value. Also, at the given height of embankment fills, the efficiency decreased with increasing the pile spacing. The embankment loads transferred on pile cap by soil arching increased when the geosynthetics installed with piles. This illustrated that reinforcing with the geosynthetics have a good effect to restraint the movement of surrounding soft grounds. The load transfer in GRPS embankment systems was affected by the interval ratio, height of fills, properties of grounds and tensile stiffness and so on.

  • PDF

Analysis of Bearing Capacity Improvement Effect of Inner Cone Penetration Equiped Open-Ended Steel Pipe Pile (개단 강관말뚝 내부 콘항타에 의한 지지력 증대효과 분석)

  • Lee, Junho;Ji, Su-Bin;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2017
  • This study analyzes behavior of bearing capacity of open-ended pipe pile from laboratory experiment results. Unlike the conventional pipe piles, cone penetration is implemented into the inside of the pipe pile. During the cone penetration, cone driving energy helps densification of plugged soils and soils below the pile end. Sand pluviator was used to obtain homogeneous soil layers. Two kinds of piles with different pile outer surface roughness were prepared, and two different drop heights of pile driving were applied. Eight experimental cases varying pile outer surface roughness, pile driving energy for conventional and cone penetration implemented piles were conducted. From the experiments, ultimate load of the pile increased approximately by 70% for increased pile driving height, and it increased by 21% for rougher surface pile. When cone penetration is implemented, the ultimate load increased by 40% in average.

A Study on the Optimum Design of Piled-raft Foundation Considering Pile Head Condition (말뚝두부구속조건을 고려한 말뚝지지 전면기초의 최적단면 설계)

  • Cho, Jae-Yeon;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.31-40
    • /
    • 2010
  • This study describes the three-dimensional behavior of pile foundations based on a numerical study. A series of numerical analyses were performed for connectivity conditions between piles and cap under vertical and lateral loadings. It is shown that a fixed connection between pile and cap is able to transfer significant bending moment through the connection and increases the pile lateral stiffness and the bending moment. Based on the results obtained, it was found that the cross sectional shear force in the raft with fixed head condition was larger than that of pinned head condition. Thus, the reinforcement of pile head and thickness of the raft also increases in fixed pile head condition. From the results, it is found that the overall behavior and cross sectional forces of pile foundations is affected significantly by the pile head conditions. Furthermore, the design of pile foundations with pinned head condition was judged to be less costly and very useful for preliminary design stages.

Settlement of Ground Surface behind Anchored Sheet-Piles in Loose Sand (느슨한 모래지반(地盤)에서 앵커로 지지(支持)된 널말뚝의 배면지반침하(背面地盤沈下))

  • Chun, Byung Sik;Kang, In Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.145-153
    • /
    • 1990
  • The relationship between ground surface settlements and wall displacements associated with excavation is analysed by the results of model test of anchored sheet-piles in loose sand. The effect of wall restriction at the toe, anchor slope, wall rigidity, and excavation level on settlement of ground surface and wall displacement are considered for model test. The results of model test are compared with the theory and the results of field measurement of braced wall. The results of analysis are shown by fitted regression equations that may be used for prediction of ground surface settlement adjacent to anchored sheet-piles. It is found that wall displacement and ground surface settlement associated with excavation are different from the supporting methods.

  • PDF

Reliability Analysis of Offshore Guyed Tower Against Anchor Pile Failures (해양 가이드-타워의 고정말뚝에 대한 신뢰도 해석)

  • 류정선;윤정방;강성후
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.117-127
    • /
    • 1991
  • For the reliability analysis of offshore guyed towers for large storm events, failure of an anchor pile of the guyline system is investigated. Two failure modes of the anchor pile due to the extreme and the cyclic wave loadings are considered. The probability of failure due to the extreme anchor load is evaluated based on the first excursion probability analysis. Degradation of the pile capacity due to cyclic loadings is evaluated by using empirical fatigue curves for a driven pile in clay. The numerical results indicate that the failure probability due to the cyclic loadings can be as large as the risk due to extreme loading, particularly for the cases with the low design safety level of the pile strength and the large uncertainty of the pile resistance.

  • PDF

Parametric Study on Lateral Vibration Model of Steel Sheet Pile (강널말뚝의 횡방향 진동모델에 대한 매개변수 연구)

  • Lee, Seung-Hyun;Kim, Byung-Il;Kim, Zu-Cheol;Kim, Jeong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1047-1052
    • /
    • 2010
  • Influence of lateral spring constant on energy dissipation and load reduction factor with erespect to lateral vibration of steel sheet pile installed by vibratory pile driver. Energy dissipation and load reduction factor varying with free length of steel sheet pile are more affected by eccentricity than flexural rigidity of steel sheet pile regardless of the magnitudes of lateral spring constants. Load reduction factors were converged when lateral spring constant was equal or larger than 10000N/m.