• Title/Summary/Keyword: 말뚝간격

Search Result 107, Processing Time 0.085 seconds

Effect of Group Spacing of Energy Piles on Thermal Analysis (말뚝 간격에 따른 에너지 파일의 열적 거동분석)

  • Min, Hye-Sun;Yun, Tae-Sup;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.39-50
    • /
    • 2011
  • This study was conducted to analyze the thermal behavior of a PHC energy pi1e system in saturated soil conditions, various seasonal and flow-speed conditions during 100 hours of operation through numerical analysis. The examination was a1so conducted with a single pile as well as with group pils. For the operation of 100 hours, the average heat exchange rate appeared 55 W/m, 47 W/m during winter and summer respectively. An increase in flow-speed was associated with a rise in the heat exchange rate. And thermal behavior analysis results during winter season show that thermal efficiency has increased when there are more free thermal planes. For the operation in group pile as 3D and 5D pile spacing (D: pile diameter), average heat exchange rate increased as pile spacing grows. Compared with the heat exchange rate of single pile, thermal exchange efficiency of group pile decreased by 89% (for 3D spacing) and 93% (for 5D spacing).

A Group Pile Effect on Changing Size of Pile Cap in Group Pile under Sand Soil in Earthquake (지진 시 사질토 지반에 근입된 무리말뚝의 말뚝 캡 크기가 무리말뚝 효과에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.39-46
    • /
    • 2019
  • The interaction between the ground and structures should be considered for seismic design of group piles supporting the superstructure. The p-y curve has been used widely for the analysis of nonlinear relationship between the ground and structures, and various researches have conducted to apply the dynamic p-y curve for seismic design of group piles. This curve considers the interaction between the ground and structures under the dynamic load such as an earthquake. However the supported effect by the pile cap and the interaction by inertia behavior of superstructures. Therefore, the shaking table test was conducted to verify the effect of the change of the pile cap in group piles supporting superstructures embedded in sandy soil. The test condition is that the arrangement and distance between centers of piles are fixed and the length of the pile cap is changed for various distances between the pile cap side and the pile center. The result shows that the distance between the pile cap side and the pile center have an effect on the dynamic p-y curve and the effect of group piles.

Analysis of Passive Pile Groups Subjected to Lateral Soil Movements-A Study on the Model Test- (측방변형을 받는 수동군말뚝의 거동분석-모형토조실험-)

  • 장서용;원진오;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.239-249
    • /
    • 1999
  • In this study, experimental work has been carried out to investigate the effect of lateral soil movement on passive piles. This paper consists mainly of two parts: the first, performance of a series of laboratory experiments on a single pile and one-row pile groups, and the second, comparison between the measured and the predicted results. In the laboratory experiments, a quadrilateral soil movement profile was imposed on model piles embedded in both sandy soils and weathered soils. The maximum bending moment and pile deflection induced in passive piles were found to be highly dependent on pile stiffness, pile spacing, relative densities and pile head fixity condition. It was shown that the group effect might either increase or decrease the maximum bending moment and pile deflection, depending on the aforementioned influence factors. Based on the results obtained, a spacing-to-diameter ratio of 7.0 seems to be large enough to eliminate the group effect, and a pile in such a case behaves essentially the same as a single pile.

  • PDF

Behavior of Pile Groups in Granite Soil Under Lateral Loading (화강풍화토에서 수평력을 받는 무리말뚝의 거동)

  • Ahn, Kwangkuk;Ko, Pilhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.69-73
    • /
    • 2009
  • In this study, three dimensional numerical analyses were performed with variation of pile spacing (S=3D, 4D, 5D) to compare the behaviour of single pile and pile group with cap in granite soil. In order to compare and analyze the lateral resistance of single pile and pile group by changing pile spacing, the pile group with array of $1{\times}3$ was employed. To reduce the computation time the symmetric boundary condition was used. And Druker-Prager model and elasticity model were used for granite soil and for concrete pile and cap, respectively. Using the analyses results of pile group in granite soil under lateral loading, p-y curve for pile group and single pile with changing pile spacing was drawn. With p-y curve p-multiplier was evaluated. As a result of analysis, the value of p-multiplier was increased with increasing pile spacing under 1.0 due to pile shadow effects.

  • PDF

A Study on Slope Safety Factor Variation by Pile Construction Depth and Space (억지말뚝 근입깊이 및 배치간격에 따른 사면 안전율 변화에 관한 연구)

  • Lee Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.115-121
    • /
    • 2005
  • At present, continual road constructions to connect from city to city are needed due to the geographical feature of Korea that about $70\%$ of the territory is mountainous area. Thus, the generation of large cut-slope has been inevitably formed. As a means of reinforcement on the cut-slope, in case of destructive disasters such as a snowstorm, pile embedment method is widely adopted. The pile embedment method is to resist possible move of soil by embedding piles from the surface to the immovable ground and then delivering the load from the piles to the immovable ground. In this study this writer analyzes the limitation of empirically used pile construction depth and its spacing through the numerical analysis. As a result, he suggests the most effective pile construction depth and space.

Theoretical Analysis of Embankment Loads Acting on Piles (성토지지말뚝에 작용하는 연직하중의 이론해석)

  • 홍원표;이재호;전성권
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.131-143
    • /
    • 2000
  • Several theoretical analyses are performed to predict the vertical load on embankment piles with cap beams. The piles are installed in a row in soft ground below the embankment and the cap beams are placed perpendicular to the longitudinal axis of the embankment. Two failure mechanisms such as the soil arching failure and the punching shear failure are investigated according to the failure pattern in embankment on soft ground supported by piles with cap beams. The soil arching can be developed when the space between cap beams is narrow and/or the embankment is high enough. In the investigation of the soil arching failure, the stability in the crown of the arch is compared with that above the cap beams. The factors affecting the load transfer in the embankment fill by soil arching are the space between cap beams, the width of cap beams and the soil parameters of the embankment fill. The portion of the embankment load carried by cap beams decreases with increment of the space between cap beams, while it increases with the embankment height, the width of cap beams, the internal friction angle and cohesion of the embankment fill. Thus, the factors affecting load transfer in embankment should be appropriately decided in order to maximize the effect of embankment load transfer by piles.

  • PDF

Numerical Study of Preventive Hydraulic Structure for Landforming (하도 육역화 방지를 위한 수공구조물에 대한 연구)

  • Yeo, Chang-Geon;Im, Jang-Hyuk;Lee, Seung-Oh;Song, Jae-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.718-722
    • /
    • 2009
  • 하도 상황이 수역(水域)에서 식생역(植生域)으로 변화하여 최종적으로 육역화(陸域化)단계로의 천이가 진행되는 현상을 하도 육역화라고 한다. 하도 육역화는 하천의 생태환경적 측면에서 많은 문제들을 야기할 수 있으며, 단일 단면 하도의 복단면 고착화로 하천 통수 단면이 감소하여 하도의 홍수 관리 기능에 심각한 위해 요소로 작용할 수 있다. 본 연구는 하도 육역화 방지를 위한 수공구조물로서 말뚝을 설치하고 그 효과를 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 수치 모의는 구조물 주변의 복잡한 흐름 모의를 위하여 복잡한 지형지물이 있는 경우에 많이 활용되는 LES(Large Eddy Simulation) 난류 모델을 적용하였으며 세굴 및 퇴적 영향을 알아보기 위하여 유사 세굴(Sediment Scour) 모델을 적용하였다. 하도 육역화 방지 수공구조물의 효과 검토를 위하여 모형 수로의 제방 근처에 말뚝을 설치하고 말뚝직경, 설치 간격 및 배열 등을 변화시켜 구조물 주변의 동수역학적 거동, 흐름분리 효과 및 세굴영향을 수치모의를 통하여 분석하였다. 분석 결과 말뚝에 의한 흐름 분리와 국부 세굴에 의하여 하상 퇴적이 상대적으로 감소되는 효과를 나타냈으며 설치간격이 수변으로부터 말뚝 두께의 2배 그리고 흐름방향으로 말뚝 두께의 2배 이내의 간격으로 설치하여야 더욱 효과적인 것으로 나타났다. 추후 다양한 수리모형 실험을 통한 검증과 다양한 조건에 대한 수치 모의를 통하여 하도 육역화 방지 기술을 개발할 수 있을 것으로 사료된다.

  • PDF

Vertical Interaction Factors of Pile Groups due to Downdrag (Downdrag에 의한 군말뚝의 상호작용계수)

  • Jeong, Sang Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.343-354
    • /
    • 1994
  • The group effect which causes different downdrag distribution in individual piles within the group was investigated by using a numerical analysis and an analytical study. The interaction factors due to group spacing and total number of piles in a group were estimated by using a three dimensional non-linear finite element approach. Based on the results obtained, it is shown that the interaction factors of pile groups varies remarkably according to the group spacing, a major influencing parameter for the group effect. Also the downdrag prediction by the proposed method was compared with the other analytical methods through an example of calculations.

  • PDF

Interaction Factors of One-Row Pile Groups Subjected to Lateral Soil Movements (측방 유동을 받는 일렬 군말뚝의 상호 작용 계수)

  • Jeong, Snag-Seom;Kim, Byung-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2000
  • 측발유동을 받는 일렬 군말뚝의 그룹효과를 파악하이 위해 3차원 유한요소해석을 수행하였다. 국내의 대표적인 화강풍화토 지반에 선단지지된 말뚝을 대상으로 측방으로 지반변위 발생시 말뚝 두부조건과 중심간격(2.5D, 5.0D, 7.0D, 단독말뚝) 및 말뚝주면의 접촉효과를 고려한 군말뚝의 상호작용계수를 산정하였다. 본 연구 결과, 단독말뚝과 비교하여 군말뚝의 간격이 좁아짐에 따라 상호작용계수는 현저하게 감소하였으며 말뚝 두부조건이 회전구속, 힌지,자유단의 순으로 감소정도가 크게 나타났다. 이는 실내모형실험을 통해 산정된 상호작용계수와도 비교적 잘 일치함을 보였다.

  • PDF

Improvement Effects of Soft Clay Soils with Varying Installation Area Ratio of Quicklime Piles (생석회말뚝 타설면적비의 변화에 따른 연약점토지반의 개량효과)

  • 임종석
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.37-42
    • /
    • 2001
  • 생석회말뚝공법은 연약점토에 대한 유용한 지반개량공법으로서 그 개량효과는 매우 빨리 나타난다. 본 연구에서는 생석회말뚝 타설 면적비에 따라 연약점토지반의 함수비나 전단강도 등의 특성이 어떻게 변화하는가를 규명하고자 하였다. 이를 위하여 철제상자에 연약점토로 모형지반을 조성하고 소요 면적비로 생석회말뚝을 타설한 후 적당한 시간간격을 두고 함수비와 전단강도를 측정하는 실내 모형시험을 수행하였다. 그 결과 면적비가 증가함에 따라 함수비의 감소량과 전단강도의 증가량은 커지지만 면적비가 약 10%를 초과하면 별 차이를 보이지 않으며 같은 면적비에서 생석회말뚝의 지름이 작고 간격이 좁으면 함수비의 감소량과 전단강도의 증가량은 더 크다는 것을 규명하였다. 또한 같은 양을 사용했다면 생석회말뚝공법보다 생석회혼합공법을 적용한 흙의 전단강도 증가량이 더 크다는 것을 알 수 있었다.

  • PDF