• Title/Summary/Keyword: 막 결합 생물반응조

Search Result 11, Processing Time 0.023 seconds

Characteristics of Nutrient Removal and Membrane Fouling in a Membrane Bioreactor using Food Waste as an Additional Carbon Source (음식폐기물 응축수를 보조탄소원으로 이용하는 막 결합 생물 응조에서의 질소, 인 제거와 막 오염 특성)

  • Ahn, Young-Tae;Youn, Jong-Ho;Chae, So-Ryong;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.519-524
    • /
    • 2005
  • Due to the low C/N ratio of domestic wastewater characteristic, addition of external carbon source for the effective N and P removal is necessary. High organic content of food waste can be used for the external carbon source in biological nutrient removal processes, The applicability of condensate of food waste (CFW), which is produced during the high-rate fermentation process, was examined in membrane bioreactor for the nutrient removal. Under the various operating conditions, nutrient removal efficiencies and membrane fouling characteristics were evaluated using synthetic wastewater. From nitrate utilization rate (NUR) test, denitrification rate was 0.19 g $NO_3-N/g$ VSS/day. With the addition of CFW increased, average removal efficiencies of T-N and T-P could be increased up to 64% and 41%, respectively. Also the optimal retention time was 3 hr/5 hr for anoxic/aerobic reactor. When applied to real sewage, membrane fouling resistance was increased up to 60%, which could be reduced from $10.4{\times}10^{12}m^{-1}$ to $5.9{\times}10^{12}m^{-1}$ with the control of influent suspended solid concentration. In summary, it was suggested that CFW could be used as an economical and effective carbon source for membrane assisted biological N and P removal.

Influence of Operating Parameters on Nitrite Accumulation in a Biofilm Reactor and Supplement of External Carbon Source for Denitrification by Sewage Sludge Solubilization (생물막 반응조에서 아질산염 축적에 미치는 운전인자 영향과 하수슬러지 가용화에 의한 탈질반응의 외부탄소원 공급에 관한 연구)

  • Ahn, Hye Min;Lee, Dae Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • A combined process consisted of a biofilm reactor and a continuously stirred-tank reactor (CSTR) was investigated for highly loaded ammonium wastewater treatment via nitrite accumulation. To enhance ammonium oxidizing bacteria over nitrite oxidizing bacteria on the surface of carriers, the biofilm reactor was operated at temperature of $35^{\circ}C$ for more than three months but the influent ammonium (500 mg-N/L) was partially oxidized to nitrite (240 mg-N/L). As pH was increased from 7.5 to 8.0, nitrite accumulation was fully achieved due to the inhibition of nitrite oxidizing bacteria under high free ammonia concentration. The biofilm reactor performance was severely deteriorated at the hydraulic retention time of 12 hr, at which incomplete nitrification of ammonia was observed. Various solubilization methods were applied to sewage sludge for enhancing its biodegradability and the combined method, alkaline followed by ultrasonic, gave the highest solubilization efficiency (58%); the solubilized solution was used as the external carbon source for denitrification reaction in CSTR. FISH analysis showed that the dominant microorganisms on the carriers were ammonium oxidizing bacteria such as Nitrosomonas spp. and Nitrospirar spp. but low amounts of nitrite oxidizing bacteria as Nitrobacter spp. was also detected.

Recent trends in anaerobic membrane bioreactor treatment of domestic wastewater (혐기성 막 생물반응조를 이용한 하수처리의 최근 동향)

  • Shin, Chung-Heon;Bae, Jae-Ho;Kim, Jeong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.529-545
    • /
    • 2013
  • With the increasing concern on climate changes and energy shortage, anaerobic membrane bioreactors (AnMBR) become a promising alternative to aerobic processes for domestic wastewater treatment. Two major advantages of AnMBRs are energy production and sludge reduction. Recently, several different configurations of AnMBRs have been proved to produce high quality effluent at reasonable hydraulic retention time and ambient temperature. One of the major problems of the AnMBR is membrane fouling control, and some solutions are already suggested. Other problems to be solved before the full application of the AnMBR are recovery of dissolved methane, management of residual nutrients and sulfide. Considering the potential advantages and future technology development, AnMBR will become major domestic wastewater treatment process in near future.

Effects of Sludge Pre-Treatment on the Excess Sludge Production in a Membrane-Coupled Bioreactor (막결합형 생물반응조에서 슬러지 전처리가 잉여슬러지 발생량에 미치는 영향)

  • Lee, Kang-Hoon;Kim, Ju-Hyun;Nguyen, Hai;Yeom, Ick-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.565-572
    • /
    • 2011
  • The effects of chemical pretreatments on the excess sludge production in the membrane-coupled bioreactor were investigated. In addition, their effects on membrane fouling were also evaluated. Two membrane bioreactors were operated. In one reactor, a part of the mixed liquor was t reated with NaOH and ozone gas consecutively and was returned to the reactor. T he f lowrate of the chemical pretreatment stream was 1.5% of the influent flowrate. During the 200days of operation, the MLSS level in the bioreactor with mixed liquor pretreatment was maintained relatively constant at the range of 8,000 ~ 10,000$mg/{\ell}$ while it increased steadily up to 26,000 $mg/{\ell}$ in the absence of the pretreatment. Each reactor was equipped with two laboratory membrane modules where the flux for each module was 20, and 30 ${\ell}/m^2{\cdot}h$, respectively. With pretreatment, almost constant transmembrane pressure(TMP) was observed throughout the operation at the flux of 20 ${\ell}/m^2{\cdot}h$. Without pretreatment the membrane module at the same flux could also be operated at relatively stable condition. However, as the MLSS increases up to 25,000 $mg/{\ell}$, a fast TMP increase was observed. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality. In addition, it was shown that stable operation in terms of TMP is possible with sludge pretreatment and recirculation.

Nitrogen and Phosphorus Removal in Membrane Bio-Reactor (MBR) Using Simultaneous Nitrification and Denitrification (SND) (동시 질산화-탈질(SND) 반응을 적용한 MBR 반응조에서 질소 및 인 제거 특성)

  • Tian, Dong-Jie;Lim, Hyun-Suk;An, Chan-Hyun;Lee, Bong-Gyu;Jun, Hang-Bae;Park, Chan-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.724-729
    • /
    • 2013
  • Simultaneous nitrification and denitrification (SND) occurs concurrently in the same reactor under micro dissolved oxygen (DO) conditions. Anaerobic zone was applied for phosphorus release prior to an aerated membrane bio-reactor (MBR), and anoxic zone was installed by placing a baffle in the MBR for enhancing denitrification even in high DO concentration in the MBR. Phosphorus removal was tested by alum coagulation in the anaerobic reactor preceding to MBR. DO concentration were 2.0, 1.5, 1.0, 0.75 mg/L in the MBR at different operating stages for finding optimum DO concentration in MBR for nitrogen removal by SND. pH was maintained at 7.0~8.0 without addition of alkaline solution even with alum addition due to high alkalinity in the raw sewage. Both TCODcr and $NH_4^+$-N removal efficiency were over 90% at all DO concentration. TN removal efficiencies were 50, 51, 54, 66% at DO concentration of 2.0, 1.5, 1.0, 0.75 mg/L, respectively. At DO concentration of 0.75 mg/L with addition of alum, TN removal efficiency decreased to 54%. TP removal efficiency increased from 29% to 95% by adding alum to anaerobic reactor. The period of chemical backwashing of the membrane module increased from 15~20 days to 40~50 days after addition of alum.

Comparison of Anoxic/Oxic Membrane Bioreactor - Reverse Osmosis and Activated Sludge Process-Microfiltration-Reverse Osmosis Process for Advanced Treatment of Wastewater (폐수의 고도처리를 위한 무산소/호기형 분리막생물반응조 - 역삼투 공정과 활성슬러지공정 - 정밀여과 - 역삼투 공정의 비교)

  • Roh, Sung-Hee;Kim, Sun-Il;Quan, Hong-hua;Song, Yon-Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.521-526
    • /
    • 2006
  • A membrane bioreactor (MBR) is an effective tool for wastewater treatment with recycling. MBR process has several advantages over conventional activated sludge process (ASP); reliability, compactness, and quality of treated water. The resulting high-quality and disinfected effluents suggest that MBR process can be suitable for the reused and recycling of wastewater. An anoxic/oxic (A/O) type MBR was applied to simultaneous removal of organics and nutrients in sewage. At first, the efficiency of submerged MBR process was investigated using a hollow fiber microfiltration membrane with a constant flux of $10.2L/m^2{\cdot}h$ at each solids retention time (SRT). Results showed that protein/carbohydrate (P/C) ratio increased and total extracellular polymeric substances (EPS) remained constant with SRT increased. Secondly, A/O type MBR with a reverse osmosis (RO) membrane was employed to treat the municipal wastewater. The performance of A/O type MBR-RO process is better for the treatment of organics and nutrients than ASP-MF-RO process in terms of consistent effluents quality.

Filtration Performance in MSBR (Membrane-Coupled Sequencing Batch Reactor) using a Membrane for Both Filtration and Aeration (막결합형 연속회분식 생물반응조에서 여과 및 공기공급용으로 분리막을 사용할 때 공기공급이 막여과 성능에 미치는 영향)

  • Ryu, Kwan-Young;Park, Pyung-Kyu;Lee, Chung-Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.337-346
    • /
    • 2005
  • An MSBR using a membrane for not only filtration but also aeration (MA-MSBR) was designed to reduce membrane fouling and to enhance water quality, and compared with an MSBR using a membrane for only filtration (BA-MSBR). COD removal efficiency of the MA-MSBR was similar to that of the BA-MSBR, but membrane performance of the MA-MSBR was better than that of the BA-MSBR. The MA-MSBR had more small particles in mixed liquor, so the specific cake resistance of flocs in the MA-MSBR was higher than that in the BA-MSBR. However, in the aerobic reaction step of the MA-MSBR, air went through membrane pores and out of the membrane surface, so cake layers on the membrane surface and a portion of organics adsorbed on membrane pores could be removed periodically. Therefore, cake resistance, $R_c$, and fouling resistance by adsorption and blocking, $R_f$, for the MA-MSBR increased more slowly than those for the BA-MSBR. Additionally, in order to compare the energy efficiency for two MSBRs, oxygen transfer efficiency and power to supply air into the reactor by a membrane module and a bubble stone diffuser were measured using deionized water. From these measurements, the transferred oxygen amount per unit energy was calculated, resulting that of MA-MSBR was slightly higher than that of BA-MSBR.

Performances of a Sludge Reduction Process Using High Concentration Membrane Bioreactor with Sludge Pretreatment (슬러지 전처리와 고농도 MBR을 이용한 슬러지 감량화 공정연구)

  • Han, Kyu-Chul;Yeom, Ik-Tae;Jung, Woo-Jin;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.559-566
    • /
    • 2003
  • From this research, the performances of a sludge reduction in the sewage sludge aerobic digestion was experimented by using a sludge pretreatment and membrane bioreactor. The submerged plate membrane was used as the solid-liquid separation membrane. After drawing small amounts of sludge in a bioreactor and then doing the alkaline treatment and ozone treatment, the sludge was sent to back to the reactor. The HRT in the reactor was set as 5 days and the operation in the reactor was carried out at the DO of 1mg/L on average. After 100 days of operation in the reactor, it was shown that the reduction efficiency of total solids was more than 83%. Most of volatile solids were removed through mineralization, and the considerable portion of the non-volatile solids was dissolved and then flowed out with the effluent. Only about 16.3% of total solids in the sludge was accmulated in the reactor even without the loss of volatile fraction. Also, by deriving nitrification and denitrification in one reactor simultaneously, more than 90% of nitrogen removal effect was realized and the experiment was run smoothly without fouling of membrane, even in the high concentration of MLSS. Based on this experiment, sludge can be reduced considerably at a low HRT by these two newly suggested approach.

Effect of Cross-flow Velocity and TMP on Membrane Fouling in Thermophilic Anaerobic Membrane Bioreactor Treating Food Waste Leachate (음식물 침출수를 처리하는 막결합 고온혐기성 소화시스템에서 교차여과와 막간압력이 파울링에 미치는 영향)

  • Kim, Young-O;Jun, Duk-Woo;Yoon, Seong-Kyu;Chang, Chung-Hee;Bae, Jae-Ho;Yoo, Kwan-Sun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The effect of cross-flow velocity and transmembrane pressure (TMP) on membrane fouling was observed from pilot-scale operation of thermophilic anaerobic membrane bioreactor (AnMBR) treating food waste leachate. It was found that fouling rate was reduced significantly as cross-flow velocity increased at constant TMP mode of operation while this effectiveness was more pronounced at lower TMP. Higher TMP resulted in less permeable fouling layer possibly due to compressibility of foulant material on membrane surface. Particle sizes of membrane concentrate ranged from 10 to $100{\mu}m$, implying that shear-induced diffusion enhance back transport of these particle sizes away from the membrane effectively. From the continuous operation of AnMBR, it was confirmed that shear rate played an important role in the reduction of membrane fouling. Membrane autopsy works at the end of operation of AnMBR showed clearly that both organic and inorganic fouling were significant on membrane surface. Surface shear by cross-flow velocity was expected to be less effective to remove irreversible fouling which can be mainly caused by the adsorption of organic colloidal materials into membrane pores.