DOI QR코드

DOI QR Code

Recent trends in anaerobic membrane bioreactor treatment of domestic wastewater

혐기성 막 생물반응조를 이용한 하수처리의 최근 동향

  • Shin, Chung-Heon (Department of Environmental Engineering, Inha University) ;
  • Bae, Jae-Ho (Department of Environmental Engineering, Inha University) ;
  • Kim, Jeong-Hwan (Department of Environmental Engineering, Inha University)
  • Received : 2013.08.08
  • Accepted : 2013.09.30
  • Published : 2013.10.15

Abstract

With the increasing concern on climate changes and energy shortage, anaerobic membrane bioreactors (AnMBR) become a promising alternative to aerobic processes for domestic wastewater treatment. Two major advantages of AnMBRs are energy production and sludge reduction. Recently, several different configurations of AnMBRs have been proved to produce high quality effluent at reasonable hydraulic retention time and ambient temperature. One of the major problems of the AnMBR is membrane fouling control, and some solutions are already suggested. Other problems to be solved before the full application of the AnMBR are recovery of dissolved methane, management of residual nutrients and sulfide. Considering the potential advantages and future technology development, AnMBR will become major domestic wastewater treatment process in near future.

Keywords

References

  1. 김응호, 임수빈, 정호찬, 이억재, 조진규 (2005) 완전혼합형 정석탈인반응조에서 미분말 전로슬래그를 이용한 고농도 인의 회수, 대한상하수도학회지, 21(1), pp. 59-65.
  2. 에너지 관리공단-신.재생에너지 센터 (2012) 2011 년 신.재생에너지 보급통계.
  3. 환경부 (2010) 에너지 자립화 기본계획.
  4. Akram , A. and Stuckey, D.C. (2008) Flux and performance improvement in a sumberged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC), Proc. Biochem., 43(1), pp. 93 - 102. https://doi.org/10.1016/j.procbio.2007.10.020
  5. Anders on, G.K., Kasapgil, B. and Ince, O. (1996) Microbial kinetics of a membrane anaerobic reactor system, Envion. Technol., 17(5), pp. 449 - 464. https://doi.org/10.1080/09593331708616407
  6. Bae, J. , Yoo, R., Lee, E. and McCarty, P.L. (2013) Two-staged anaerobic fluidizeid-bed membrane bioreactor treatme.nt of settled domestic wastewater, Wat. Sci. Technol., 68(2), pp. 394 - 399. https://doi.org/10.2166/wst.2013.191
  7. Bandar a, W. M., Satoh, H., Sasakawa, M., Nakahara, Y., Takahashi, M. and Okabe, S. (2011) Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low - strength wastewater at low temperature with degassing membrane, Wat. Res., 45, pp. 3533 - 3540. https://doi.org/10.1016/j.watres.2011.04.030
  8. Bolong , N., Ismail, A.F., Salim, M.R. and Matsuura, T. (2009) A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination, 239, pp. 229 - 246. https://doi.org/10.1016/j.desal.2008.03.020
  9. Brockm ann, M. and Seyfried, C.F. (1996) Sludge activity and cross-flow microfiltration - A non-beneficial relationship, Wat. Sci. Technol., 34(9), pp. 205 - 213.
  10. Calder on, K., Rodelas, B., Cabirol, N., Gonzlez-Lopez, J. and Noyola, A. (2011) Analysis of microbial communities developed on the fouling layers of a membrane-coupled anaerobic bioreactor applied to wastewater treatment, Bioresour. Technol., 102, pp. 4618 - 4627. https://doi.org/10.1016/j.biortech.2011.01.007
  11. Chu, L .B., Yang, F.L. and Zhang, X.W. (2005) Anaerobic treatment of domestic wasteater in a membrane-coupled expended granular sludge bed(EGSB) reactor under moderate to low temperature, Proc. Biochem., 40, pp. 1063 - 1070. https://doi.org/10.1016/j.procbio.2004.03.010
  12. Cookne y, J., McAdam, E. J., Cartmell, E. and Jefferson, B. (2012) Recovery of methane from anaerobic process effluent suing poly-di-methyl-siloxane membrane contactors, Wat. Sci. Technol., 65(4), pp. 604-610. https://doi.org/10.2166/wst.2012.897
  13. Dagnew , M., Parker, W., Seto, P., Waldner., K., Hong, Y., Bayly, R. and Cumin, J. (2011) Pilot testing of an AnMBR for municipal wastewater treatment, WEFTEC, 80, pp. 4931 - 4941.
  14. De Cli ppeleir, H., Yan, X., Verstreate, W. and Vlaeminck, S.E. (2011) OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times. Appl. Microbiol. Biotecnol., 90(4), pp. 1537 - 1545. https://doi.org/10.1007/s00253-011-3222-6
  15. Edwar d, M., Courtney, B., Heppler, P.S. and Hernandez, M. (1997) Beneficial discharge of iron coagulation sludge to sewers, J. Environ. Eng., 123, pp. 1027 - 1032. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:10(1027)
  16. Eklund , L., Hellstrom, B.G, Hultman, B., Lind, J.E. and Nordstrom, B. (1991) Swedish full-sclae experiments on modified operational modes in removal of nutients, Wat. Sci. Technol., 24(7), pp. 97 - 102.
  17. Gao, D .W., Zhang, T., Tang, C.Y.Y., Wu, W.M., Wong, C.Y., Lee, Y.H., Yeh, D.H. and Criddle, C.S. (2010) Membrane fouling in an anaerobic membrane bioreactor: Difference in relative abundance of bacterial species in the membrane foulant layer and in suspension, J. Membr. Sci., 364, pp. 331- 338. https://doi.org/10.1016/j.memsci.2010.08.031
  18. Gimen ez, J.B., Robles, A., Carretero, L., Duran, F., Ruano, M.V., Gatti, M.N., Ribes, J., Ferrer, J. and Seco, A. (2011) Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fiber membrane bioreactor at pilot scale, Bioresour. Technol., 102, pp. 8799 - 8806. https://doi.org/10.1016/j.biortech.2011.07.014
  19. Grassi, M., Rizzo, L. and Farina, A. (2013) Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process, Environ. Sci. Pollut. Res., 20, pp. 3616 - 3628. https://doi.org/10.1007/s11356-013-1636-7
  20. Hartley , K. and Lant P. (2006) Eliminating nonrenewable $CO_2$ emissions from sewage treatment: an anaerobic migrating bed reactor pilot plant study, Biotechnol. Bioeng., 95(3), pp. 384 - 398. https://doi.org/10.1002/bit.20929
  21. Hatamoto, M., Yamamoto, H., Kindaichi, T., Ozaki, N. and Ohashi, A. (2010) Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor, Wat. Res., 44, pp. 1409 - 1418. https://doi.org/10.1016/j.watres.2009.11.021
  22. Herrer a-Robledo, M., Cid-Leon, D.M., Morgan-Sagastume, J.M. and Noyola, A. (2011) Biofouling in an anaerobic membrane bioreactor treating municipal sewage, Sep. Purif. Technol., 81, pp. 49-55. https://doi.org/10.1016/j.seppur.2011.06.041
  23. Ho, J. and Sung, S. (2010) Methanogenic activities in anaerobic membrane bioreactor(AnMBR) treating synthetic municipal wastewater, Bioresour. Technol., 101, pp. 2191 - 2196. https://doi.org/10.1016/j.biortech.2009.11.042
  24. Hoekst ra, A.Y. and Chapagain, A.K. (2008) Globalization of water: Sharing the planet's freshwater resources. Blackwell Publishing, Oxford, UK.
  25. Hu, A. and Stuckey, D.C., (2006) Treatment of dilute wastewaters using a novel submerged anaerobic membrane bioreactor, J. Environ. Eng., 132, pp. 190 - 198. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:2(190)
  26. Hunt, K.S., Maxwell, M., Morine, M., Neher, M., Okamura, K., Okazaki, K., Poter, D., Segler, K. and Smith, T. (2000) Advanced wastewater treatment testing showdown in Henderson, Nevada. Water Environ. Fed. Annual Conf., WEFTEC, New Orleans.
  27. Jeison a, D. and van Lier, J.B. (2008) Feasibility of thermophilic anaerobic submerged membrane bioreactors(AnSMBR) for wastewater treatment, Desalination, 231, pp. 277 - 235.
  28. Jiang, J.Q. and Graham, N.J.D. (1998) Pre-polymerised inorganic coagulants and phosphorus removal by coagulation - A review, Water SA., 24(3), pp. 237 - 244.
  29. Jiang, T., Kennedy, M.D., Guinzboug, B.F., Vanrolleghem, P.A. and Schippers, J.C. (2005) Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism, Wat. Sci. Technol., 51(6-7), pp. 19-25.
  30. Kampm an, C., Hehdrickx, T.L.G, Temmink, B.G., Zeeman, G. and Buisman, C.J.N. (2012) Denitrification with dissolved methane for energyn efficient wastewater treatment. 2012 9th IWA Leading-Edge Conference on Water and Wastewater Technologies, Brisbane, Australia.
  31. Kocada gistan, E. and Topcu, N. (2007) Treatment investigation of the Erzurum city municipal wastewater with anaerobic membrane bioreactors, Desalination, 216, pp. 367 - 376. https://doi.org/10.1016/j.desal.2006.10.038
  32. Letting a, G., Rebac, S. and Zeeman, G. (2001) Chanllenge of psyshrophilic anaerobic wastewater treatment, TRENDS in Biotecnol., 19(9), pp. 363-369. https://doi.org/10.1016/S0167-7799(01)01701-2
  33. Lew, B ., Tarre, S., Beliavski, M., Dosorets, C. and Green, M. (2009) Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment, Desalination, 243, pp. 251 - 257. https://doi.org/10.1016/j.desal.2008.04.027
  34. Liao, B .Q., Kraemer, J.T. and Bagley, D.M. (2006) Anaerobic membrane bioreators: Application and research directions, Environ. Sci. Technol., 36(6), pp. 489 - 530. https://doi.org/10.1080/10643380600678146
  35. Lin, C. H., Lin, A.Y.C., Chandana, P. and Tsai, C.Y. (2009) Effects of mass retention of dissolved organic matter and membrane pore size on membrane fouling and flux decline, Wat. Res., 43, pp. 389 - 394. https://doi.org/10.1016/j.watres.2008.10.042
  36. Lin, H. , Chen, J., Wang, F., Ding, L. and Hong, H. (2011) Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment, Desalination, 280, pp. 120 - 126. https://doi.org/10.1016/j.desal.2011.06.058
  37. Ma, B. , Peng, Y., Zhang, S., Wang, J., Gan, Y., Chang, J., Wang, S., Wang, S. and Zhu, G. (2013) Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures, Bioresour. Technol., 129, pp. 606 - 611. https://doi.org/10.1016/j.biortech.2012.11.025
  38. Martin , I., Pidou, M., Soares, A., Judd, S. and Jefferson, B. (2011) Modeling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment, Environ. Technol., 32(9), pp. 921 - 932. https://doi.org/10.1080/09593330.2011.565806
  39. Martin , B.D., Kock, L.D., Stepheson, T., Parsons, S.A. and Jefferson, B. (2013) The impact of contactor scale on a ferric nanoparticle adsorbent process for the removal of phosphorus from municipal wastewater, Chem. Eng. J., 215-216, pp. 209 - 215. https://doi.org/10.1016/j.cej.2012.11.006
  40. Martin -Garcia, I., Monsalvo, V., Pidou, M., Le-Clech, P., Judd, S.J., McAdam, E.J. and Jefferson, B. (2011) Impact of membrane configuration on fouling in anaerobic membrane bioreactors, J. Membr. Sci., 382, pp. 41 - 49. https://doi.org/10.1016/j.memsci.2011.07.042
  41. Martin-Garcia, I., Mokosch, M., Soares, A., Pidou, M. and Jefferson, B. (2013) Impact on reactor configuration on the performance of anerobic MBRs: Treatment of settled sewage in temperate climates, Wat. Res., In press.
  42. Martinez-Sosa, D., Helmriech, B., Netter, T., Paris, S., Bischof, F. and Horn, H. (2011) Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions, Biorescour. Technol., 102, pp. 10337 - 10385.
  43. McCart y, P.L., Bae, J.H. and Kim, J.H. (2011) Domestic wastewater treatment as a net energy producer - Can this be achieved?, Environ. Sci. Technol., 45, pp. 7100-7106. https://doi.org/10.1021/es2014264
  44. Mulder , A., Graaf, A. A., van de Robertson, L.A. and Kuenen, J.G. (1995) Anaerobic ammonium oxidation discoverded in a denitrifying fludized bed reactor. FEMS Micobiol. Ecol., 16, pp. 177 - 184. https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  45. Mulder , A. (2003) The quest for sustainable nitogen removal technologies, Wat. Sci. Technol., 48(1), pp. 67 - 75.
  46. Nguye n, M.L. (1996) Ammonium-nitrogen and phosphate-phosphorus removal from wastewater using natual New Zealand zeolites, In:Mason, I. G. ed. Proceedings of a seminar on tertiary treatment options for diaryshed and piggery wastewaters, Massey University, June 20, Palmerston North, New Zealand, pp. 68 - 79.
  47. Padiva l, N.A., Kimbell, W.A. and Redner, J.A. (1995) Use of iron salts to control dissolved sulfide in trunk sewers, J. Environ. Eng., 121, pp. 824 - 829. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:11(824)
  48. Park, H., Choo, K.H. and Lee, C.H. (1999) Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor, Sep. Sci. Technol., 34(14), pp. 2781 - 2792. https://doi.org/10.1081/SS-100100804
  49. Pauss, A., Andre, G., Perrier, M. and Guiot, S.R. (1990) Liquid-to-gas mass transfer in anaerobic process: Inevitable transfer limitations of methane and hydrogen in the biomethanation process, Appl. Environ. Micobial., 56(6), pp. 1636 - 1644.
  50. Porcell i, N. and Judd, S. (2010) Chemical cleaning of potable water membranes:A review, Sep. Purif. Technol., 71, pp. 137 - 143. https://doi.org/10.1016/j.seppur.2009.12.007
  51. Ritman n B.E. and McCarty, P.L. (2001) Environmental Biotechnology: Priciples and Applications, McGrawHill.
  52. Seghez zo, L., Zeeman, G., van Lier, J.B., Hamelers, H.V.M. and Lettinga G. (1998) A review : The anaerobic treatement of sewage in UASB and EGSB reactors, Bioresour. Technol., 65(3), pp. 175-190. https://doi.org/10.1016/S0960-8524(98)00046-7
  53. Shin, C ., Bae, J. and McCarty P.L. (2012) Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor, Bioresour. Technol., 109, pp. 13 - 20. https://doi.org/10.1016/j.biortech.2012.01.014
  54. Siegris t, H., Salzgeber, D., Eugster, J. and Joss, A. (2008) Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal, Wat. Sci. Technol., 57(3), pp. 383 - 388. https://doi.org/10.2166/wst.2008.048
  55. Smith, A.L., Stadler, L.B., Love, N.G., Skerlos, S.J. and Raskin, L. (2012), Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater, Bioresour. Technol., 122, pp. 149 - 159. https://doi.org/10.1016/j.biortech.2012.04.055
  56. Smith, A., Skerlos, S.J. and Raskin, L. (2013) Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater, Wat. Res., 47, pp. 1655 - 1665. https://doi.org/10.1016/j.watres.2012.12.028
  57. Sui, P. , Wen, X. and Huang, X. (2008) Feasibility of employing ultrasound for on-line membrane fouling control in an anaerobic membrane bioreactor, Desalination, 219, pp. 203 - 213. https://doi.org/10.1016/j.desal.2007.02.034
  58. Uemur a, S. and Harada, H. (2000) Treatment of sewage by a UASB reactor under moderate to low temperature conditions, Bioresour. Technol., 72, pp. 275-282. https://doi.org/10.1016/S0960-8524(99)00118-2
  59. U.S. S outhern California Regional Brine-Concentrate Management (2009) Reclamation - Secondary/Emerging Constituents Report.
  60. van Do ngen, U., Jetten, M.S.M. and van Loosdrecht, M.C.M. (2001) The SHARON-Anammox process for treatment of ammonium rich wastewater, Wat. Sci. Technol., 44(1), pp. 153 - 160.
  61. van Li er, J. B. (2011) Nutrient Recovery a challenge for the future. ADSW&EC, Vienna, Austria.
  62. Verrec ht, B., Maere, T., Nopens, I., Brepols, C. and Judd, S. (2010) The cost of a largescale hollow fibre MBR, Wat. Res., 44, pp. 5274 - 5283. https://doi.org/10.1016/j.watres.2010.06.054
  63. Vyride s, I. and Stuckey, D.C. (2009) Saline sewage treatment using a submerged anaerobic membrane bioreactor (SAMBR): Effects of activated carbon addition and biogassparging time, Wat. Res., 43, pp. 933 - 942. https://doi.org/10.1016/j.watres.2008.11.054
  64. Walker S.J. and Morgan W.J. (1995) The addition of ferrous and ferric chloride for hydrogen sulfide and struvite control in anaerobic digesters, Metro Wastewater Reclamation District Rep., Denver, Colorado.
  65. Wang, X., Ma, Y., Peng, Y. and Wang, S. (2007) Short-cut nitirfication of domestic wastewater in a pilot-scale A/O nitrogen removal plant, Bioprocess Biosyst. Eng., 30, pp. 91 - 97. https://doi.org/10.1007/s00449-006-0104-x
  66. Wang, J., Peng, Y., Wang, S. and Gao, Y. (2008) Nitrogen removal by simultaneous nitrification and denitrification via nitrite in a sequency hybrid biological reactor, Chinese J. Chem. Eng., 16(5), pp. 778 - 784. https://doi.org/10.1016/S1004-9541(08)60155-X
  67. Wen, C ., Huang, X. and Qian, Y. (1999) Domestic wastewater treament using an anaerobic bioreactor coupled with membrane filtration, Proc. Biochem., 35, pp. 335 - 340. https://doi.org/10.1016/S0032-9592(99)00076-X
  68. Yoo, R .H., Kim, J.H., McCarty, P.L. and Bae, J.H. (2012) Anaerobic treatment of municipal wastewater with a staged anerobic fluidized membrane bioreactor (SAF-MBR) system, Bioresour. Technol., 120, pp.133-139. https://doi.org/10.1016/j.biortech.2012.06.028
  69. Yoo, R .H., Kim, J.H., McCarty, P.L. and Bae, J.H., (2013) Effect of temperature on the treatment of domestic wastewater with a staged anerobic fluidized membrane bioreactor (SAF-MBR) system, AD13-IWA, Santiago de Compostela, Spain.
  70. Zhang, J., Padmasiri, I., Fitch, M., Norddahl, B., Raskin, L. and Morgenroth, E. (2007) Influence of cleaning frequency and membrane history on fouling in an anaerobic membrane bioreator, Desalination, 207, pp. 153 - 166. https://doi.org/10.1016/j.desal.2006.07.009
  71. Zhang, X., Wang, Z., Wu, Z., Lu, F., Tong, J. and Zang, L. (2010) Formation of dynamic membrane in an anerobic membrane bioreactor for municipal wastewater treatment, Chem. Eng. J., 165, pp. 175 - 183. https://doi.org/10.1016/j.cej.2010.09.013
  72. Zhang, X., Wang, Z., Wu, Z., Wei, T., Lu, F., Tong, J. and Mai, S. (2011) Membrane fouling in anaerobic dynamic membrane bioreactor(AnDMBR) for municipal wastewater treatment : Characteristics of membrane foulants and bulk sludge, Proc. Biochem., 48(8), pp. 1538 - 1544.